Shape Formation by Self-Disassembly in Programmable Matte
Systems
by
Kyle William Gilpin

B.S., Massachusetts Institute of Technology (2006)
M.Eng., Massachusetts Institute of Technology (2006)

Submitted to the Department of Electrical Engineering anth@uter Science
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Comp@&eience
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2012
(© Massachusetts Institute of Technology 2012. All righteresd.

AUTNOT . e
Department of Electrical Engineering and Computer Science

May 22, 2012

Certified DY . ..o e

Daniela Rus

Professor

Thesis Supervisor

Accepted by
Leslie A. Kolodziejski
Chair, Department Committee on Graduate Students

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JUN 2012 2. REPORT TYPE 00-00-2012 to 00-00-2012
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Shape Formation By Self-Disassembly In Programmable Matter Systems | .\ n\UMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
M assachusetts I nstitute Of Technology,77 M assachusetts REPORT NUMBER
Ave,Cambridge,M A,02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
120

14. ABSTRACT

Programmable matter systems are composed of small, intelligent modules able to form a variety of

macr oscal e objects with specific material propertiesin response to external commandsor stimuli. While
many programmable matter systems have been proposed in fiction, (Barbapapa,Changelings from Star
Trek, the Terminator, and Transformers), and academia, a lack of suitable hardware and accompanying
algorithms preventstheir full realization. With thisthesisresear ch,we aim to create a system of miniature
modulesthat can form arbitrary structureson demand.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 237
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Shape Formation by Self-Disassembly in Programmable MatteSystems

by
Kyle William Gilpin

Submitted to the Department of Electrical Engineering anth@uter Science
on May 22, 2012, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Comp&eience

Abstract

Programmable matter systems are composed of small, geetlimodules able to form a vari-
ety of macroscale objects with specific material propeitiegsponse to external commands or
stimuli. While many programmable matter systems have beepoged in fiction, (Barbapapa,
Changelings from Star Trek, the Terminator, and Transfosin@end academia, a lack of suitable
hardware and accompanying algorithms prevents their déallization. With this thesis research,
we aim to create a system of miniature modules that can fobtrary structures on demand.

We develop autonomous 12mm cubic modules capable of boridingnd communicating
with, four of their immediate neighbors. These modules arergy the smallest autonomous mod-
ular robots capable of sensing, communication, compurtaéind actuation. The modules employ
unique electropermanent magnet connectors. The four ctomsen each module enable the mod-
ules to communicate and share power with their nearest heigh These solid-state connectors
are strong enough for a single inter-module connection ppst the weight of 80 other mod-
ules. The connectors only consume power when switching affpthey have no static power
consumption.

We implement a number of low-level communication and cdrdatgorithms which manage
information transfer between neighboring modules. Thégerithms ensure that messages are
delivered reliably despite challenging conditions. Thegnitor the state of all communication
links and are able to reroute messages around broken coroationi links to ensure that they
reach their intended destinations.

In order to accomplish our long-standing goal of progranmensttape formation, we also de-
velop a suite of provably-correct distributed algorithrnattallow complex shape formation. The
distributed duplication algorithm that we present allotwes $ystem to duplicate any passive object
that is submerged in a collection of programmable matterutesd The algorithm runs on the
processors inside the modules and requires no externalémiigon. It require€(1) storage and
O(n) inter-module messages per module, wheis the number of modules in the system. The
algorithm can both magnify and produce multiple copies efshbmerged object.

A programmable matter system is a large network of auton@npoocessors, so these algo-
rithms have applicability in a variety of routing, sensotwark, and distributed computing appli-

3

cations. While our hardware system provides a 50-modutéeg for the algorithms, we show, by
using a unique simulator, that the algorithms are capaldpeiating in much larger environments.
Finally, we perform hundreds of experiments using both tihmeigtor and hardware to show how
the algorithms and hardware operate in practice.

Thesis Supervisor: Daniela Rus
Title: Professor

Acknowledgments

Many people deserve my gratitude and thanks for helping tkentlais thesis a reality. First, my
advisor, Daniela Rus, was instrumental in the process. ¢ h@en incredibly fortunate to find
such an amazing advisor who'’s always been a staunch ally ang@ortive mentor. More than
anything, Daniela has taught me to dream big.

My committee members, Rob Wood and Anantha Chandrakassmdakerve a great deal of
thanks. Not only have Rob and Anantha provided useful fegdba | have developed my thesis,
they have been long-term collaborators and mentors as Wedtler Anantha’s guidance, | had the
chance to develop several high-performance FPGA systeahs/ére essential in securing my first
job outside academia. Rob has been an ideal collaboratcaraefpthe DARPA Programmable
Matter project. From day one, he has been incredibly gesendth his time and equipment, no
guestions asked.

Ara Knaian developed the electropermanent magnets thatssential to the Smart Pebble
modules. Ara was always full of energy and wild ideas. Fudlgdira’'s enthusiasm alone, we
painstakingly built more than 250 electropermanent magimghand. Kent Koyanagi helped with
the Robot Pebbles project over the course of two summerd:skaadication and work ethic were
amazing. Despite some awfully boring tasks, he never camgida and he often was in lab for
longer hours than | was.

| also owe my thanks to my fellow graduate students in theristed Robotics Laboratory.
Few groups function so well together with so little conflictcompetition. In particular, there are
several alumni who were instrumental to my quick integraaod success with the group: Keith
Kotay, Marty Vona, Carrick Detweiler, and luliu VasilescOutside of MIT, | have the BMG to
thank for reminding me not to take life too seriously. Schtic, Sangeen, Brad, KC, Mahmoud,
Ihsanul, Matt, Joe, and Paul, thanks for all the good times.

Finally, | have my parents, Bill and Linda, sister, Amy, andewErin to thank for their sup-
port, encouragement, and understanding. My parents &abstay love of all things electronic and
mechanical from an early age with many trips to yard saleoldradios and record players to

take apart in the basement. As | grew older, there was nevartage of Capsella modules, Radio

5

Shack electronic project kits, Legos, and, most importantouragement to explore. Amy, you
were always a good, if not willing, test subject for my coptrans. More importantly, you have
always taken interest in my life and, by doing so, encouragedo aim high. Erin, your generos-
ity, unwavering support, perpetual excitement, and remngsthat there are more important things
in life than working all the time have been essential. | codtask for a better partner, and | could
not have done this without you-thank you.

This work was supported by DARPA and the US Army Research ©fficder grant number
WO911NF-08-1-0228, NSF EFRI grant number 0735953, Intet, tue NDSEG fellowship pro-

gram.

Contents

1 Introduction 17
1.1 Challenges. 19
1.2 CurrentStateofthe Art e 21
1.3 OurApproach e 22

1.3.1 Self-Assembly and Disassembly 25
1.3.2 Distributed Duplication. e . 26
1.4 Thesis Contributions e e 27
15 ThesisOutline. e 30

2 Related Work 33

2.1 ModularRobotics 34
2.1.1 ChainSystems
2.1.2 Lattice Systems 36
2.1.3 TrussSSYStems
214 Free-FormSystems 39

2.2 Other Programmable Matter Systems 40

2.3 Self-Assembling Systems e 41

2.4 Simplifying Shape Formation by Self-Disassembly 42

25 Simulators 43

3 Hardware 45
3.1 Connection Mechanism e 48

35

39

3.1.1 Electropermanent Magnet Theory 49

3.1.2 Electropermanent Magnet Construction 52

3.2 PowerElectronics e 53
3.3 Processors 55
3.4 Bonding e 55
3.5 Communication 59
3.6 Power 61
3.7 TestFixture 64
3.8 3DModules 6 6
3.9 Miniaturization e 68
3.9.1 Connector Technologies 69
3.9.2 UnitModule Fabrication 72
The Sandbox Simulator 75
4.1 SimulatorDesign e e 78
4.2 Process Distributionand CodeReuse 80
4.3 Communication e 81
4.4 Extensibility e 84
4.5 Front-end and Simulated Robot Separation. 84
4.6 EXperiments e 86
Low Level Communication 89
5.1 Message Buffers 90
5.2 PacketFormat 93
5.3 Packet-Level Experiments e 100
5.4 Application Message Format e 103
5.5 MonitoringLinkState e 107
5.6 Robustness: Respondingto BrokenLinks 110
5.7 Link State Experiments e 114

5.8 Two-DimensionalRouting
5.8.1 Routing Algorithm

5.8.2 ExperimentalResults 0 .

6 Shape Formation Basics
6.1 Sculpting e
6.2 Self-Assembly
6.2.1 Self-Assembly Algorithm
6.2.2 Self-Assembly Experiments
6.3 Localization and Reflection Algorithms
6.3.1 Localization Algorithm
6.3.2 Three-Dimensional Localization
6.3.3 Localization Experiments,
6.3.4 Reflection Algorithm
6.3.5 Reflection Experiments
6.4 Shape Distribution Algorithm e
6.5 Self-Disassembly Algorithm 0oL
6.5.1 Parents, Children, and Neighbors
6.5.2 Child-to-Parent Disconnection
6.5.3 DisconnectioninAction
6.5.4 Correctness
6.5.5 Self-Disassembly Running Time Experiments

6.6 Shape Distribution and Disassembly Experiments

7 Duplication
7.1 Duplication Algorithms e
7.1.1 Encapsulation and Localization Algorithm
7.1.2 Shape Sensing / Leader Election Algorithm
7.1.3 Border Naotification Algorithm

9

123
125
127
127
131
134
135
136
137
143
144
149
154
154
154
158
601

. 161
. 166

169
169
170

. 172

7.1.4 ShapeFillAlgorithm 174

7.1.5 Self-Disassembly Algorithm 175

7.2 Storage and Communication e 175
7.3 RODUSINESS 176
7.4 Automated Duplication Placement 179
7.5 Multiple Duplicates and Magnification 183
7.6 ExperimentalResults e 184

8 Three-Dimensional Duplication 193

8.1 Challenges of Three-Dimensional Duplication195

8.1.1 Three-Dimensional Routing Algorithm 196

8.2 Three-Dimensional Duplication Algorithm 197
8.3 Message Routing Algorithm e 201
8.4 Synchronization Algorithm e 202
8.5 Exterior Face Identification Algorithm 203
8.6 Area Accounting During Shape Fill 204
8.7 StorageandMessage Scaling o 205
8.8 ExperimentalResults e 205

9 Conclusion 209
9.1 Contributions 210
9.2 Limitations e 211
9.3 LessonsLearned 213
9.4 Near-TermImprovements o i i i e e 216
9.5 LookingtotheFuture 218

A Schematics 221

10

List of Figures

1-1 TheSmartPebbles 18
1-2 The High-Level Shape Formation Process« 24
1-3 ThesisOrganization e e 28
3-1 Pebble modulevs. Michemodule 46
3-2 The Components of the Programmable Matter Smart Pebbles. 47
3-3 Jig for Attaching Electropermanent Magnets to Flex @ir8ubstrate 48
3-4 Electropermanent Magnet and Capacitor Closeups 49
3-5 Electropermanent Magnet Theory of Operation bl
3-6 Electropermanent Magnet HysteresisCurve b2
3-7 Electropermanent Magnet Assembly Jig 53
3-8 Electropermanent Magnet Power Electronics. 54
3-9 Bonding Strength Pull Test Fixture 56
3-10 Latching Forcevs. Distance e 57
3-11 Coil Current and Voltage while Latching 59
3-12 \oltage Pulses Seen at Receiving Electropermanenh®étag 61
3-13 Power Transferin a Lattice of Modules 63
3-14 Pebble TestFixture e 65
3-15 Axially Symmetric Electropermanent Magnet Prototype. 67
3-16 Forming 3D Structures with Heterogeneous Pebbles 68
4-1 Simulator Process Distributiono 76

4-2 Simulator Software Hierarchyo
4-3 Simulator GUI Screenshot
4-4 Comparison of Simulated Line Localization Time on OnestHwr Multiple

4-5 Comparison of Simulated Square Localization Time on Bost or Multiple . . .

5-1 Transmitand Receive Message Buffers.
5-2 CommunicationByte Format e

5-3 Low-Level Communication Protocol

5-4 Percentage of Dropped Messages per SuccessfulMessage

5-5 Setup to Test Modules’ Response to Broken Communicéafitks
5-6 Two-Dimensional Routing Algorithm Experimental RungiTimes as a Function
of Destination Coordinates e
5-7 Two-Dimensional Routing Algorithm Experimental RungiTimes as a Function
of Manhattan Routing Distance

5-8 Two-Dimensional Routing Algorithm Experimental RungiTimes of Undeliver-

ableMessages

5-9 Two-Dimensional Routing Algorithm Experimental RungiTimes of Undeliver-

able Messages e

6-1 The Self-Assembly Algorithmin Action
6-2 Vibration Table for Self-Assembly
6-3 A Sequence of Still Images of the Self-Assembly Process
6-4 The Distribution of Modules after Self-Assembly
6-5 The Smart Pebble Face Numbers and Coordinate System
6-6 Localization Time for Linesof Modules
6-7 Localization Time for Square Sheets of Modules

6-8 Localization Time for Cubic Blocks of Modules
6-9 Localization Time as a Function of Object Diameter
6-10 Localization Times for 12-Module Rectangles of Smathtites with Varying As-

pectRatios e

6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31

Localization Communication Cost for Lines of Modules.
Localization Communication Cost for Square Sheetsadifles
Localization Communication Cost for Cubic Blocks ofdlbes
Reflection Communication Cost for Linesof Modules
Reflection Communication Cost for Square Sheets of Msdu
Reflection Communication Cost for Cubic Blocks of Matul
Reflection Time for Linesof Modules
Reflection Time for Square Sheetsof Modules
Reflection Time for Cubic Blocks of Modules
Reflection Times for 12-Module Rectangles with DiffigriAspect Ratios
Inclusion Chain Formation,
Disconnection e e
Self-Disassembly Time for Lines of Modules

Self-Disassembly Time for Square Sheetsof Modules
Self-Disassembly Time for Cubic Blocks of Modules
Self-Disassembly Time for 12-Module Rectangles wiifieling Aspect Ratios . .
Self-Disassembly Time as a Function of Object Diameter.
Self-Disassembly Communication Cost for LinesofMedu
Self-Disassembly Communication Cost for Square Sheféélodules
Self-Disassembly Communication Cost for Cubic Blook®odules

Shapes Created via Virtual Sculptingo oL,

Duplication Overview e e
Sense Messages Circumnavigating the Obstacle Beinticbtgnl
Missing Communication Link Robustness
Missing Module Robustness
Automated Duplicate Placement,
Creating Multiple Duplicates
Creating Magnified Duplicates uu....

7-8 Shapes Created via Distributed Duplication185
7-9 1x-Scaled Wrench and its Duplicate Used to Charactéhniedduplication Algo-
rithm’s Running Time and CommunicationCost187

7-10 5x-Scaled Wrench and its Duplicate Used to Charaetéhie Duplication Algo-

rithm’s Running Time and CommunicationCost187
7-11 Duplication Running Time for 1—8x Scaled Wrenches 188
7-12 Total Communication Cost of Duplicating 1—8x Scalecewahes 189
7-13 Communication Cost per Module of Duplicating 1—8x &dalVrenches 190
7-14 Histogram of Number of Messages Exchanged when Duiplgcd—8x Scaled

Wrenches 191
8-1 Coffee MugtobeDuplicated 194
8-2 Basic Principle of Duplication 194
8-3 Slicing Three-Dimensional Objects for Plane-wise Dagilon 197
8-4 Obstacle and Slice Perimeter Detection 199
8-5 Slice Tree Construction e 200
8-6 Accounting of Negative Area during the FillProcess204
8-7 Three-Dimensional Duplication CommunicationCost 207
8-8 Three-Dimensional Duplication Messages Per Modulédrtgsam 208
A-1 Robot Pebbles Schematic 222
A-2 Test/Programming Fixture Schematic 223

14

List of Tables

5.1 Sequence NumberUsage Scheme 0. 99

5.2 Inter-module Message ExchangeRate 101

5.3 Inter-module Message Exchange SuccessRate 102
5.4 Inter-module Message Format 107

5.5 Routing Performance with Topology Changes115
5.6 Time for the System to Discover that a Routing Messagengdeliverable 120
6.1 Self-Disassembly Experimental Results 167
7.1 Comparison of Potential Automated Placement Positions. 182
7.2 Two-Dimensional Duplication Experimental Results 185
8.1 Three-Dimensional Duplication Experimental Results... 206

15

16

Chapter 1

Introduction

In the sixty-five plus years since the advent of the first commpprogram, the concept of pro-
gramming software has been refined, popularized, and beabigaitous. We propose moving
beyond programming software to programming the propertissh as shape, stiffness, texture,
and conductivity of physical matter. Since their advenmpaters have changed from room-filling
mainframes, to bulky desktops, to portable laptops, totligight tablets, to smart phones. We
seeprogrammable matteas the next step in this progression. Our long-term goal gdate a
programmable matter system that is able to programmaticadify its physical properties. The
ability to form objects with specific form and material projes would be the ultimate universal
toolkit. Such a system would be immensely useful for an astmbon an inter-planetary mission
or a scientist at an isolated research station. For mechanit surgeons, the ability to form highly

customized, task-specific tools would be immensely vakiabl

Our particular approach relies amodularprogrammable matter. Modular programmable mat-
ter systems modify their bulk material properties by chagdhe characteristics of, or relationships
between, the small unit modules that, as a group, composartfes programmable matter system.
We envision a bag containing millions of these tiny, inggint particles that the user shakes in
order to form some goal object. As they are agitated, the mesdrontained within the bag selec-
tively bond with their neighbors in order to form the usersabgshape. After the bonding process

is complete, the user can retrieve the object from the bagdastoff the extra modules. When

17

the user is done using the object, he or she returns it to thevbare it disintegrates back to its

component modules for reuse.

The goal shape may be a robot built for a specific task, (a stvaass through a tunnel or a
wheeled rover to quickly cover open ground), or an objecigiesl for a particular job, (such as
a wrench or surgical instrument). In all cases, the resyinucture, due to the intelligent nature
of its component parts, is imbued with unique properties.oBject formed from programmable
matter could provide real-time, in-situ feedback on ingé¢stresses; disintegrate at a controlled

rate; or dynamically change its rigidity to correspond with task at hand.

The Smart Pebblegshown in Figure 1-1) and associated algorithms that weqsepn this

thesis are a first step towards what we believe will be the leggcy of programmable matter.

Figure 1-1: The Smart Pebbles form a modular programmabteemsystem that is capable of
creating 2D objects by selectively forming and severingdsobetween the constituent modules.
Each module can communicate and bond with its nearest neigldmd has a small processor
inside.

18

1.1 Challenges

In the quest to create a universal modular programmableenststem, there are challenges which
must be overcome. Each unit module must contain computatéensing, connectors, and a power
source in as small of package as possible. The fabricatitilese modules should be streamlined
so that it becomes practical to create systems with millafn®odules. The algorithms control-
ling the modules must be highly efficient and distributed Isat they can run on the modules
themselves. In the design process, there is inherent cdiopdietween hardware complexity,
computational demands, and system capabilities. Sopaieti hardware may ease computational
demands and enable additional system functionality, brartes at the price of additional man-
ufacturing complexity and cost. There are many competingirements that must be taken into
account during the design process.

With regard to hardware, the modules must be electricalty mechanically active in order
to be called programmable matter, and not just a large ldiggd computer. The modules should
not rely on a complicated external apparatus to functione 3ystem should not be constrained
to a lab environment in which the modules’ computation artdat®n capabilities are offloaded
to auxiliary machinery. Randomly shaking a bag of modulessisnuch outside intervention as is
reasonable while maintaining the system’s autonomy.

Fabricating millimeter-scale three dimensional struestthat are electrically and mechanically
active is difficult. While micro- and nano-fabrication pesses exist to fabricate 2D and 2.5D
electromechanical structures, there are currently fewswayabricate 3D structures at the same
scale. What options do exist are difficult to employ in masglpction. While 2D systems will be
part of the natural progression to 3D structures, pracpoajrammable matter systems must be
capable of creating 3D objects. Algorithms developed foh2dware must be extensible to three
dimensions.

Each module in a programmable matter system must be capigiegrammatically bonding
with its neighbors. Small, easily switchable, high-sttbngonnectors do not exist. For a pro-
grammable matter system to form objects that are more theelypdecorative, the inter-module

bonds must be strong. Additionally, the connection medrasimust have quick response times,

19

consume minimal power, and be reversible. The connectossepsor, and communication sys-
tem of each module must also be powered. Finding a way to yuygapler to millions of tightly
packed, millimeter-scale modules is not trivial. With @nttechnology, itis infeasible to embed a
battery in each module. Even with batteries, recharging suarge collection of modules would
be problematic. Any practical system must find some otheraggh to supplying the modules

with power.

There are also algorithmic challenges. The programmabtienmaodules must be able to self-
assemble. As individual modules continue to shrink, anchtimaber of modules in a system grows
into the millions, the modules must be capable of self omjagiso that they can autonomously
bond and communicate with their neighbors. Once assemtilednodules must have a reliable
communication scheme that can quickly recover from anyrerrédny system with millions of
modules is certain to contain many defective units that tikaten the system’s high-level func-

tionality. A practical system must be designed with inhérebustness in every component.

Conveying the user’s desired object to the programmabléemsystem is challenging. The
user interface must be sophisticated enough to provide simagtion barrier between the high-
level object description and the behavior of each individoadule in the system. Furthermore,
due to power, storage, and processing constraints, a pnogalle matter system must have an
efficient way of distributing information about the objeleait the user wishes to form. Individually
informing each module in a million module system of its radeimpractical. The system must

employ a better approach whose worst case space and tinesraquts scale favorably.

Finally, the development of vast modular programmable enagystems requires advanced
debugging tools. Current tools struggle to support mabsparallel systems. The challenges
stem from several factors. The chief difficulty is that theteyn’s functionality is governed by the
interactions of many individual modules, not by each modulsolation. Debugging one module
may not be difficult, but debugging its interactions with tither thousand or million modules is
a formidable challenge. Aggregating just a portion of thetem’s state so that it is displayed in a
useful manner is a significant undertaking. Even addressipgrticular module in order to query

its particular state is challenging in a system with milaf modules.

20

1.2 Current State of the Art

Modular programmable matter systems are an outgrowth oftbeular robotics field [133, 36].
Much effort has been devoted to designing novel hardwatesdmaparatively little effort has been
made to develop advanced algorithms for million-modulgpronmable matter systems. Existing
programmable matter hardware spans many scales rangimgrfrierometers [85, 111, 24] to
many centimeters and everywhere in between. Existing remeplatforms use modules that are
of many different shapes including triangles [8], squadexl| 38], cubes [34, 113], circles [93],
and cylinders [37, 47]. The majority of systems operate imdimensions, but there are also many
three dimensional systems. Typically, the modules usetirgetdimensional systems are larger

due to their additional mechanical complexity.

Modular systems with smaller unit modules typically traamsfomputation or actuation abilities
away from the modules. Many of the smallest modules are cetelylpassive and rely on external
fixtures that manipulate the modules with electromagn@&ti@8] or fluidic forces [122, 112], for
example. Some even employ micro-robots to aid the assembbeps [84]. It will be difficult to
move these types system out of the lab and into the everydasgpements unless their support
equipment follows. Even larger systems that have on-boangpatation and actuation abilities
often rely on external controllers to instruct the modulédth the easy availability of lithium-
ion batteries, newer systems tend to be battery powerednany systems are often tethered to

external voltage supplies.

Inter-module connection mechanisms are an active areasefreh. Traditionally, modular
robotic systems have relied on active mechanical latctongd rigidity and strength [19, 63]. As
modules sizes have continued to shrink, designers havedbtukalternative connection mecha-
nisms including both permanent magnets [134] and electgoeta [37, 50]. The crucial drawback
to electromagnets is that they consume a large amount ofrpoaiing it difficult to untether the
modules from an external power source. One alternativeettireimagnets is to use mechanically
switchable permanent magnets [35]. Some modules also ngegpeemanent passive mechanical
bonding mechanisms [123], but this requires external éctmao control which connectors are

latched. Other researchers have attempted to use eletitdstces [47], but electrostatic connec-

21

tors are not practical at large scales where they exertgiblgiforces. As modules continue to
shrink, electrostatic connectors will become more atitradioth for their potential holding forces
and easy of fabrication. Researchers are also developongiging connectors based on van der
Waals forces [79, 57].

The algorithms for controlling modular robots and prograaibie matter systems are more
difficult to characterize although there are some commomése Most research assumes that the
modules in a system are arranged in regular lattices or shAifew algorithms exist that assume
the modules may be arranged randomly [95, 29], but few hamlwaamples of such systems
exist [102]. As modules continue to shrink and precise tmedule alignment becomes more
difficult, such free form system will become the norm.

There are many algorithms devoted to locomotion or recordigon in modular systems [27,
118, 115]. These algorithms can only be executed on systdmsevmodules support relative
locomotion. Some algorithms have focused on self-repd&d[B4]. Self-assembly is another
common goal, and there have been many theoretical prodds&s92, 48] and hardware imple-
mentations [78, 73]. Often, the goal shape is encoded witkt @fsgeneric rules shared by all
modules in the system. Other approaches to programminge siitégmpt to convey the desired
shape’s description to those modules on the exterior of tiserable [37] or only those modules
that are part of the desired shape [34]. Finally, duplicat®oanother approach to shape forma-
tion [38, 64]. One particular proposal uses a centralizgdrithm running as part of a modular

programmable matter system to duplicate arbitrary threeedsional objects [88].

1.3 Our Approach

Our approach improves on existing hardware and algoritihmsveral ways. It is best understood
in the context of traditional fabrication methods, whiclyreequential processes performed on
heterogeneous materials. For example, to fabricate aatitgitque wrench with traditional meth-
ods, one machines the head of the wrench, casts the bodys t@dubber handle, fabricates
the electronics, and finally assembles all of the componedtwce built, the wrench is difficult

to repurpose for other tasks. In contrast, our approachbiacttion with modular programmable

22

matter is a cyclic process that utilizes homogeneous nat&ach tiny cubic module has on-board
computation, nearest-neighbor communication, and lagcbapabilities. Using their on-board in-
telligence, in collaboration with their neighbors, the mtes can selectively bond together to form

specific shapes.

To fabricate the same torque wrench with our modular prograbie matter system, one begins
with a model of the wrench. This model could be miniaturizadd it only needs be a rough
approximation of a wrench made out of plastic, Styrofoaray,abr even paper. The user surrounds
the model wrench with programmable matter modules by bgrifie model in a bag containing
thousands or even millions of individual modules. Workingcollaboration, the modules sense
the shape of the model and set about making a duplicate. Tpleaie is formed when the extra
modules in the bag, those in the vicinity of, but not in direontact with, the original model
selectively bond with their neighbors. If the original mbdea miniature, the duplicate can be
magnified. The number of copies is only limited by the amoudmtrogrammable matter material
in the bag. Once the modules that form the duplicate wrenel hiaished mechanically bonding

with their neighbors, the user can remove both the origindlduplicate wrenches from the bag.

The new torque wrench is imbued with, not only the desirethfdsut the desired sensing and
computation capabilities. The modules retain their sepsteomputation, and bonding abilities
once removed from the bag. If the user needs to refine the Weeshape, he can selectively
remove additional modules. Taken to the extreme, when tiieisidone with the wrench, he drops

it back into the bag where it disintegrates, and the pagicén be reused.

Our approach to realizing programmable matter is uniqgueveral specific ways. First, we
have developed a novel modular programmable matter haeduiatiform, the Smart Pebbles. Each
Smart Pebble is a 12mm cube, (see Figure 1-1), capable ofamieeltly bonding to and commu-
nicating with four planar neighbors. The modules employgurielectropermanent magnets that
serve as mechanical bonding, communication, and powesfagimterfaces. Each module contains
an 8-bit microprocessor that controls its four electrop@rent magnets. Using a set of external
connections, we can provide power to a single module frontkvpower is distributed to all other

modules in the system using the electropermanent magneectors. When activated, each con-

23

nector is strong enough to support the combined weight ditgigther modules. When placed on
an inclined vibration table, (the two-dimensional equavdlof a shaking bag), the Smart Pebbles
self-assemble. We have also developed and deployed &lgarithat allow the modules to self-
disassemble in an organized fashion. As a result of thesiiedhithe Smart Pebbles serve as an
excellent platform on which to implement the shape formmasitgorithms that we have developed.
The two unique aspects our of approach to high-level, afyitshape-formation functionality
are captured by Figure 1-2. First, we propose a two-stepesf@mation process in which the
modules in the system first coalesce and self-assemble icbon@letely uniform solid block of
material that encases the original object that is beingidafgd. Once this initial block of material
is complete, then the system utilizes self-disassemblgrimore modules that are not a part of the

manufactured duplicate.

Figure 1-2: To form shapes using the Smart Pebbles systerassivp object to be duplicated
(shown in black) is submerged in a large collection or progreble matter particles. The particles
solidify in a regular lattice to encase the passive shapee@alidified, modules bordering on the
passive shape sense its topology and inform other modutles incinity that they will become part
of the duplicate shape. Once these duplicate modules (simogrey) have been notified, all other
modules break their mechanical bonds leaving just thermalgind duplicate shapes behind. When
the user is done with the duplicate, he may drop it back inédoting where it will disintegrate, and
the modules can be reused.

Second, we introduce new user interface for programmabteensystems in which a scaled-
down physical replica of the desired object is all that isdeekto describe the goal shape. The user
does not need a complicated CAD model or any other technésadrgption. Given a bag of smart
particles, we envision dipping a replica of the object weha create into the bag. The modules
surrounding the object sense and learn its shape. Therg psagrammed communication and

connections, they replicate the object at the desired sisattg the spare modules in the bag. Once

24

the solid replica is created, all other inter-module cotines are broken, and the user can retrieve
the duplicate object from the bag. This approach elimint#tesneed for external computation
and actuation along with the associated external commumircknks. It also reduces the internal

neighbor-to-neighbor communication burden on the modhlesselves.

1.3.1 Self-Assembly and Disassembly

Traditional self-assembling systems aim to form compleaxpss in a direct manner. As these
structures grow from a single module, new modules are ombyvald to attach to the structure
in specific locations. By carefully controlling these ldoas and waiting for a sufficiently long
period of time, the desired structure grows in an organicmeanin contrast, our system greatly
simplifies the assembly process by initially aiming to formnegular crystalline block of fully
connected modules. We only limited attempts to restrictcwhmodules or faces are allowed to
bond with the growing structure. After we form this initidiolok of material, we complete the
shape formation process through self-disassembly andsstibin of the unwanted modules.

Our approach has a distinct advantage over techniques bagsy on self-assembly. Self-
disassembly does not rely on complicated attachment mesrharthat require precise alignment
or careful planning. Self-disassembly excels at shapedtiom because it is relatively easy, quick
and robust. Our system does not need to carefully selectlgxatere new modules are allowed
to bond to the growing structure. In the process, it alsods/the need to consider the structural
integrity of the growing ensemble. By first forming a regukttice, the system serves as its own
support scaffolding. As an example of why our two-step pssde advantageous, consider how
much easier it is to carve an arch out of solid marble than tib isonstruct an arch from loose
stones.

As the individual modules in self-reconfiguring and prognaafle matter systems continue to
shrink, it will become increasingly difficult to actuate amekcisely control the assembly process.
In particular, designing modules capable of exerting thieds necessary to attract their neighbors
from significant distances will be challenging. Insteadssth systems may find assembly and

disassembly much simpler when driven by stochastic enmigorial forces. The Smart Pebble

25

modules, which are able to latch together from distancesoappately 20-35% of the module
dimensions, could easily take advantage of these stoclasstembly mechanisms to form an initial
structure. Our particular system also relies on extermakf®to carry the unused modules away
from the final shape. (The connectors that we employ cannbtditract and repel.) In our system,
this force is often gravity, but it could also be vibratiomid flow, or the user reaching into the bag

of particles to extract the finished object.

1.3.2 Distributed Duplication

A big challenge associated with fabricating composite cisjerom a large collection of intelligent
particles is conveying the desired shape of the object tabadused to the ensemble of modules.
One approach is to manually inform each module whether oit shbuld bond with its neighbors
to become part of the goal shape. Alternatively, we can usephgal interface to define the
shape and automatically generate a list of messages torirdach module whether it is part of
the structure. Both of these strategies require a reliagni@encunication link with the modules and
a large volume of information to be exchanged. Using theenapproach, one message must be
sent for each module included in the final shape. Assumirigetiieh module is roughly one cubic
millimeter, it would require over 200,000 modules, and leep@0,000 messages, to form an object
the size of a baseball. More advanced approaches reducertireunication burden by relying on
shape abstraction to convey the desired form to the inibdéction of modules. Even so, the
user must know how to best fit the desired shape into the ¢amlileof modules. That requires
the user know detailed information about the initial aremgnt, information that takes time and
energy to collect and transmit to the user. Furthermore) étbe user can blindly guess how to
orient the desired shape in the initial block of materiag, slgstem must still have a robust external
communication interface in order receive the shape ddgmmifrom the user.

As an alternative, we propose shape formation through cagbn. In our system, the user
surrounds a passive original object with programmable enatiodules. Without anything more
than a single start command, the system employs a set oftrabsiibuted algorithms to sense

the shape of the passive object and inform the appropriatkil@s within the collection that they

26

are to become part of a duplicate object. This approach mdites the communication link from
the user to the system and all of the communication overhgesacated with it. It also removes
the need for the graphical interface to the system. Becdugsalgorithm is distributed and does
not rely on a centralized, external controller, the disiréal algorithm provides a scalable solution.
No module ever stores the complete goal shape nor the gltddal af the system; the memory
required by each module 3(1). Furthermore, the number of inter-module messages exeldang

is O(n) per module, whera is the number of modules in the system.

1.4 Thesis Contributions

In this document, we aim to examine the following thesis:

Digital fabrication can be accomplished with smart partisicapable of

self-disassembly.

To do so, we focus on programmable matter systems consistingllections of physically
connected robotic modules that have the ability to comnataievith and bond to their imme-
diate neighbors. Using this functionality, we show that atesn of these modules is capable of
autonomously creating user-specified goal shapes throygoaess of self-assembly followed
by self-disassembly. This thesis makes a number of coititisl to the programmable matter
and modular robotics communities. First, it presents nbaetiware that is among the smallest
of autonomous modular robot systems. Second, it developsdistributed algorithms that are
applicable to both programmable matter systems and brosateiorking challenges. Finally, it
illustrates the use of a unique simulator that allows forgame code to be used in hardware and
simulation. These main contributions can be divided intaaber of tasks that are illustrated in
Figure 1-3.

The majority of the tasks illustrated in Figure 1-3 are cesdearound algorithms that allow

several different approaches to shape formation in modaksotic systems:

e the user cawirtually sculptthe goal shape using a simple GUI that transmits a desaniptio

27

Sjuswuadx]y
uoneoydng az

uonesday 1g
uonesliuge
az

sjuswadxy
uonealdng
as paiejnuiis

m.w_h—m:ﬂn.m
W_ n 102 _u_._ e
Uy SUIsSIN

mu.Cm:.C_.__m_ﬁ_xm_

sjuawadxy
uoR23UU0SI

sadeys

swipuos)y Sunnoy sjdninin

uopJsuueIsiqg uoneddng uoneddng

paziuesip ac az Jundinog

uoijewiod adeys

sjuawadxg
Alquiassy
=5

°lgelL
UonReIgIA

wiuod)y
payaEd-850))

Ajquuassy
-4I8s

sjuawiLisdxgy
Jole[nuis

voddns ag

S2|npow
Fuissin
R SyuUn usyoig

[2PoN
UOREedIUNWWo)
aleinany

Jolenuwis

sjuaLuadxy
alempiey
|2Aa] Mo

SIeMULIY

Buissed a8essapy
[2ne1-ma

-041da3

sa|qqad Hews

Figure 1-3: This thesis can be divided into three major comptnehardware, simulator, and
28

shape formation algorithms, each of which is explained in the remainder of this document.

of the goal shape back to the initial block of material usingiaimal number of inclusion

messages;

e a miniature description of an object can be expanded into ennfarger object through

magnification
e an original description of an object can taplicatedto form an arbitrary number of copies;
e sensingallows the replication of a passive object engulfed by aeotibn of modules;

e any number of the above approaches can be combined to foitraghp complex shapes

from an initial block of material.

To complement the algorithms and demonstrate that theyatgeorrectly in practice, we
have developed the Smart Pebbles. The Pebbles are one euliimeter autonomous modules
capable of shape formation through self-assembly anddssdssembly. They have a number of

key features:
e The 12mm cubes are formed by wrapping a flexible circuit adcubrass frame;
e Four genderless connectors enable the formation of 2Dtates;

e The connectors are based on solid-state electropermaragmats which are strong enough

to support the weight of 80 modules yet consume no power ¢xdegn changing state;

e The connectors are used for latching, communication, amgeptransfer (the modules do

not contain batteries).

In presenting the hardware, simulator, and algorithms i@a/by this thesis we have explored
theory, implementation, and experiments. Where posdibéeexperiments have been performed
using physical hardware and supplemented with the restifsatistic simulations. In summary,

this thesis makes the following contributions:

e the concept of, and the algorithms to implement, shape foomahrough the process of

self-assembly followed by organized self-disassembly;

29

¢ ashape formation algorithm that is capable of duplicatimggnifying, and creating multiple

copies of an original shape submerged into a collection @frsparticles;

e a system employing unique electropermanent magnets aatédeiardware to achieve me-

chanical bonding, communication, and power transfer frasmgle component;

e an easily reconfigurable high-level computing platform posed of 50 12mm-cubic nodes
capable of communicating with their nearest neighbors teldg@, debug, and deploy dis-

tributed algorithms;

e a unigue simulator that allows a single code base to be ussdfiware-only simulation,

hardware in the loop simulation, and hardware-only expenits.

1.5 Thesis Outline

The remainder of this document is organized as follows. lagiér 2, we present existing research
related to this thesis. Specifically, we address how prograbte matter evolved from the larger
modular robotics field. In doing so, we highlight key hardevand software systems and present
more details on the current state of the art. In Chapter 3 wegnt the Smart Pebbles hardware
platform. We detail both the construction of the Pebbles el &s their physical and electrical
attributes. In particular, we present our miniaturizecttgpermanent magnet connectors which
allow the Pebbles to mechanically bond, communicate, aacegbower. Chapter 4 introduces the
distributed simulator, called Sandbox, which we createarder to test the application-level algo-
rithms that drive the Smart Pebbles to form specific shaples.bEnefit of the Sandbox simulator
is that it emulates both the low-level hardware and comnatiun software so that the exact same
high-level source code can be easily re-targeted for ettteehardware Pebbles or the simulator.
Chapter 5 extends the discussion of inter-module commtiaicatarted in Chapters 3 and 4. It
explains the low-level algorithms used to exchange mesdaggveen neighboring modules. The
chapter also presents results that characterize the pefme of the communication infrastructure.

Having described both the hardware and software platfo@hapter 6 presents the basic shape

30

formation algorithm; it demonstrates that the Smart Pebate capable of self-assembling. Once
the modules have formed an initial block of material, theptbaalso shows how the user can
virtually sculpt multiple shapes out of the initial block wfaterial using self-disassembly. Results
of both the self-assembly and sculpting processes arededlin dedicated sections of the chapter.
Chapter 7 presents our distributed shape duplication ighgor The algorithm is capable of
duplicating a passive shape that is engulfed by a collectionodules. We present the algorithm,
analyze its running time, and verify that it operates cdlyawith experiments in both simulation
and hardware. Chapter 8 shows how we have extended the atigri@lgorithm to three dimen-
sions. The chapter includes simulated experiments with 8980 modules. Finally, Chapter 9
discusses what we have learned while developing our systednit also presents suggestions for

how to proceed in making programmable matter as ubiquiteyseesonal computers.

31

32

Chapter 2

Related Work

Programmable matter defines any system which is able to gnivsliphysical properties in a pro-
grammatic way. Such systems can modify their elasticitgffcment of friction, conductivity, or
geometry. To date, most programmable matter systems havedasigned as collections of par-
ticles, or modules, whose local inter-module interactigogern the macro-scale behavior of the
system. While thesmodularprogrammable matter systems are popular, they do not feliyne

the field.

The term programmable matter rose to popularity around 200%n the robotics community.
MacLennan [69] described, in high-level terms, using atpars to dictate the behavior of a ma-
terial at a molecular level. He proposed “universally pesgmable intelligent matter” that could
be programmed to fill any number of material needs. Nagpdluceg the vision of programmable
matter when she wrote, “imagine a flexible substrate, ctingi®f millions of tiny interwoven
programmable fibers, that can be programmed to assumeetiffglobal shapes” [77]. The dis-
tinction between programmable matter and other robotitegys can be arbitrary. Many robotic
systems developed before “programmable matter” was popethstill meet all requirements to

be called programmable matter.

Due to programmable matter’s origins within the roboticenoaunity, there are two themes
which permeate most programmable matter systems: 1) tleelased on modular robotic sys-

tems; and 2) the systems are primarily concerned with progriag shape. In particular, most

33

programmable matter systems are composed of robotic methae can communicate with, and
selectively bond to, their neighbors. These system chdmageshape by either rearranging, adding,

or subtracting constituent modules.

Our research builds on previous work in self-reconfigurimigatics and robotic self-assembly,
both of which grew out of the modular robotics field which begath a paper presented at Interna-
tional Conference on Robotics and Automation in the SprintP&8 by Toshio Fukuda et al. [28]
titled “Dynamically Reconfigurable Robotic System.” In thpaper, Fukuda et al. describe the
abstract concept of a reconfigurable robotic system thaassmme different shapes. In that paper,
Fukuda and Nakagawa envisioned a robot system composeffiesédi types of modules that can
combine to accomplish a variety of tasks. Over the past tyweears, modular robotics research
developed many facets: hardware design; planning andat@igorithms; the trade-off between

hardware and algorithmic complexity; efficient simulatiand system integration.

2.1 Modular Robotics

Modular robots are collections of physically connectedcegbmechanically active modules that,
as a whole, form robotic systems that exhibit capabilitiester than those of the individual mod-
ules. Typically modular robots can change their shape diigaration in order to adapt to a variety
of different tasks. For example, a collection of moduleddwoeaconfigure from a closed chain that
rolls quickly over open ground to a legged robot that morde#asverses rough terrain. Modular
robots are typically touted for their adaptability, theiuft-tolerance, and the relative simplicity of
the unit modules. Modular robotic systems can be describhddcckassified on several axes using
a variety of properties. In what follows, we choose the tiadal route of classifying modular
robotic systems by the geometry of the system: chain, &ttiwss, or free form. For a more

detailed history of the modular robotics field, consult [138].

34

2.1.1 Chain Systems

The defining characteristic of chain-type modular roboteys is the fact that the modules, when
connected to their neighbors, are arranged in a chain. Tdtesas may be one-dimensional, or
two-dimensional, but three-dimensional chains are notaasneon. The fact that a chain-type
modular robot is two-dimensional, or even one-dimensiaha@ts not mean that it cannot operate
in three dimensions. In fact, snake-like modular robots posed of segments with orthogonal

joints are quite common.

One of the first chain-type modular robotic systems was tHgped system developed by
Yim [129, 130]. The Polypod system was composed of two tygesiadules: segments and
nodes. It could form a variety of shapes including rollingps and hexapods, and it went on to
inspire many other chain-based systems. One was the CON®ensyl1, 100, 12] in which each

module was composed of two orthogonal servo motors comtgodlach module’s pitch and yaw.

Murata et al. developed the M-TRAN modular robotic systei®, [6, 61, 74] which has
undergone multiple revisions and improvements. In [46]mitaura et al. employ a set of in-
terconnected, out of phase oscillators to achieve walkaits gn the M-TRAN system. Marbach
and ljspeert improved upon the ability of systems like M-TR# generate gaits in real-time by
applying function optimization to their modular systemM@R [70]. Murata et al. added cameras
to the M-TRAN system so that a set of M-TRAN modules could saea perform independent
tasks, and then rejoin into a larger structure [74].

The ATRON system [81, 45] was developed to improve upon thERAN. Lund et al. wanted
to keep M-TRAN's ability to form dense lattices while takiagvantage of the two orthogonal
degrees of freedom, (pitch and yaw), found in the CONRO sysiéhe Superbot system [98] also
builds upon on the mechanical design of M-TRAN by adding aditamhal degree of rotational
freedom between the two existing rotation axes.

The PolyBot is chain-type modular robot [131, 135] with agbrrotational degree of freedom.
PolyBot evolved into CKBot which has demonstrated the gbib reassemble itself after being
accidentally or intentionally destroyed [134]. The Molbetsystem [139], developed by Lipson et

al., is another example of a chain-type modular system witit one degree of freedom but still

35

able to achieve interesting 3D configurations. Lipson eslabwed that a short chain of Molecube
modules, along with some free modules, can self-replicate.

Yim et al. designed another unique chain-type system namddCRET [123] which uses a
connected chain of inter-latching right angle tetrahedtoriorm structures. Neighboring RATChET
modules latch together when the angle between them passescsitical value, and they unlatch
through the use of shape memory alloy (SMA) springs wheneaelatéyond 70 degrees Celsius.
Interestingly, the RATChET modules possess no intelligerinstead, they rely on an intelligent
external actuator which rotates to control one end of thelitagn chain. One unique property of

the RATChET system is its relatively strength.

2.1.2 Lattice Systems

Lattice-type modular robot systems are collections ofrodenected robotic modules in which
the units are situated at the intersection points of a twdieret dimensional grid. (A 1D lattice
system is simply a chain-type robot.) The main charactersgparating a lattice system from a
densely configured chain-type robot is the density of theraannections between the modules.
In a lattice-type system, each module is typically conrgk¢teall of its neighbors. In a dense
chain-type system, two modules may be neighbors, but thikypatibe physically connected.

Additionally, lattice-type systems tend to be built with dubes that contain no rotational de-
grees of freedom. While the modules in a lattice system allyitbhave mechanisms which enable
the modules to move relative to, and bond with, their neigbjibey generally cannot bend them-
selves. In comparison, chain-type systems are often lvaith imodules that contain one or more
rotational degrees of free so that the modules can flex likeslin a chain. There is some overlap
between between the two types of system.

Chirikjian et al. developed one of the first lattice-basedimiar robotic systems [17, 16, 83]
in which the modules are deformable hexagons capable ofibgmdth their neighbors. Others,
such as Walter, Tsai, and Amato [118] further analyzed tiesagonal type systems to create
distributed motion planners capable of reconfiguring tretesy from one state to another.

Murata et al. were also early contributors to the developrotlattice-based modular robotic

36

systems with their development of a roughly hexagonal medapable of rolling around its neigh-
bors in two dimensions [75, 137]. Kurokawa et al. presentddee dimensional adaptation [60]
composed of cubes with six protruding arms capable of aratiYoshida et al. improved on
this system with a new design that used shape-memory altogiacs to rotate one robot module

around the perimeter of a neighbor [136].

One of the simplest lattice systems is the the Digital Clayjqmt [132] project. The system
was a set of completely passive modules that relied on theaseake changes to it topology. The
2.5cm rhombic dodecahedrons were able to sense and conateuniith their neighbors in order

to create a virtual model of the physical arrangement of resdu

Rus et al. also explored the idea of 3D modules capable reggoafion through a series of
latchings, rotations, and unlatchings with the Moleculstesn [54, 55, 56]. In [96, 97], Vona
and Rus describe a different type of deformable latticeesysiThe Crystal system is composed of
square modules able to expand and contract by a factor oftti@ix-y plane. Suh et al. expanded
on the Crystal concept with the Telecubes [105] that couldeno three dimensions by expanding

all six faces.

Chiang and Chirikjian analyzed how to perform motion plagnin a lattice of rigid cubic
modules able to slide past each other [15]. The CHOBIE robetldped by Koseki [53] is able
to actually perform the sliding motion assumed by Chiang @hdikjian in [15]. More recently,

An developed the EM-Cube system [3] which is also capabldidihg motion.

Another unique lattice is the I-Cube developed by Khoslalefld4, 90]. The 3D I-Cube
system consists of passive cubes which are connected b &inks with three rotational degrees
of freedom that are able to grab, reposition, and releaseubes. The 3D I-Cube system was an
improvement of the 2D system [42] developed by Hosokawa. dbakearranging cubic modules

in a vertical plane.

Goldstein, Campbell, and Mowry initiated the Claytronigsjpct by publishing several pa-
pers [37, 22] proposing lattice-based “claytronic atomfaioms. These vertically-oriented cylin-
drical robots, which were incapable of independent motised 24 electromagnets around their

perimeters to achieve rolling locomotion about their nbigis. Goldstein et al. envisioned a sys-

37

tem in which millions of smaller catoms could form arbitrafyapes using a randomized algorithm

that avoided conveying a complete description of the shapat¢h module in the system.

The catoms continue to evolve. One of the newest instamtig{é 7] employs hollow cylinders
rolled from SiO, rectangles patterned with aluminum electrodes. The asithope that two of
these cylinders, when placed in close proximity with thegsaligned, will be able to rotate with
respect to one another using electrostatic forces. Spatyfithe electrodes, (which reside on the
inside of each cylinder and are electrically isolated bySi®&), will be charged so that they attract
and repel mirror charges on the neighboring cylinder in a thay causes rotation. Currently, the
system appears to be constrained to form 2D structures. tthera claim the completed system
will have a yield strength similar to that of plastic and thia modules will be able to transfer

power and communication signals capacitively from neighibmeighbor.

The Claytronics project has proposed, but not yet demaestraith hardware, the use of sub-
millimeter intelligent particles as sensing and replicatdevices [88]. In particular, Pillai et al.
present a theoretical 3D fax machine in which the object tdfdeed” is immersed in a container
of intelligent particles that sense and encode the objdet®nsions. At the receiving end, these
same Claytronic particles decode the shape descriptidrbgethe transmitter and bond together
to replicate the original object. Unlike our approach, &l approach is completely centralized

and relies on an external computer for computation.

White, Kopanski, and Lipson developed hardware and alyostfor several 2D stochastically-
driven self-assembling systems [121]. To form specific ssapach module is provided with a rep-
resentation of the desired shape and decides, based ocat®loin the structure, whether to allow
other modules to bond to its faces. Lipson et al. extenddad 2esystem to 3D [122, 108, 109]
by using cubic modules suspended in turbulent fluid to aehself-assembly and reconfiguration.
As the free modules circulate in the fluid, they pass by a grgwtructure of assembled modules.
When they come close enough, they are accreted onto théwstuche modules attract or re-
pel each other with fluid suction or positive pressure. Eaefsions of the system used modules
with interval values that could redirect these suction ésrcMore recently, Lipson’s group has

worked to move the intelligence and actuation capabilfties the modules to the tank in which

38

the modules circulate [113].

We developed the Miche system [34] consisting of 45mm cubadutes capable of mating
with their neighbors using mechanically switchable peremmagnets. Each module contains
three switchable magnets, each of which mated with a steelfia a neighboring module. Because
the connectors were gendered, any collection of modulesdiae assembled by hand so that the
connectors were always oriented correctly, but the systas eapable of self-disassembling to
form 3D structures. The Robot Pebbles are based, at leashuige, on the Miche modules.

One of the newest lattice-type modular robotics is an asyatem composed of identical,
hexagonal, single-rotor modules [82]. A group of moduley m@nnect to form a flying platform
with an arbitrary arrangement of multiple rotors. In adufitito the ability to fly, each module

contains wheels so that the system may self-reconfiguresogrtiund for the specific task at hand.

2.1.3 Truss Systems

Truss systems, as their name implies, are modular robattesys in which the modules are nodes
and edges in a truss structure. Both the trusses and comneécty be active in such systems.
Unlike the lattice-based systems, truss-based systemstdoerd to operate on any regular lat-
tice. Most truss-based systems under development empidy #tat expand or contract to achieve
structural deformation. One of the first such system to doa® Tetrobot [39]. The Odin system,
conceived by Lyder, Garcia, and Stoy [67, 68] consists adalphysically different types of mod-
ules: active strut modules capable of changing their lengabsive strut modules of fixed length;
and joint modules. The biologically inspired Morpho systdr88] developed by Nagpal et al. is

similar to Odin. It also uses active links, passive linkg] annnector cubes.

2.1.4 Free-Form Systems

Free-form systems are able to aggregate modules in at keamstasbitrary positions. One such
system is the Slimebot [101, 102]. The system consists oftickd vertical cylindrical modules
that move on a horizontal plane. The perimeter of each madwa@vered by six gender-less hook

and loop patches used to bond with neighboring modules. eTpaches oscillate radially in and

39

out from the center of the body. By controlling the frequeang phase of the oscillations between
neighbors, the system can achieve aggregate motion in a dixection.

Researchers are also developing algorithms for free-forstems. Funiak et al. developed
a localization algorithm [29] that is capable of localizitems-of-thousands of irregularly packed
modules in 3D. Rubenstein, Shen, et al. developed a numksragfe formation algorithms for
collections of two-dimensional modules. These algorittati@wv an arbitrary-sized collection of
modules to form arbitrary scale-independent shapes [94,®&ce the shape is formed, modules
can be added to or removed from the system, and the systemewdhfigure itself to incorpo-
rate the new modules. The resulting shape will grow or shrimk its basic form will remain
unchanged. Recently, Rubenstein et al. developed a 10@ewhardware platform on which to

deploy these algorithms [93].

2.2 Other Programmable Matter Systems

So far we have focused on the most common programmable nsgdeFms: those composed
of robotics modules that rearrange themselves to form &tyaof different shapes. Despite the
popularity of these modular systems, there are many otkatige approaches. One interesting ap-
proach to programmable matter uses the concept of jammiageéde trusses with programmable
stiffness [43]. By combining multiple trusses into a stwret the authors are able to change the
structure’s shape and material properties. At a largeesthé authors propose creating larger
“bags” of jammable material that can be formed into a speslimpe and then made rigid.

Another alternative take on programmable matter is thetahble display [10]. The system
demonstrates a type of virtual programmable matter by usurglreds of arbitrarily placed pix-
els to form text and images in a distributed manner. The sy$&eks actuation ability, but it
demonstrates the realization of macro-scale “physicapprties from simple modules using local
communication and limited computation power.

Whitesides et al. also developed a system with programmngtiieal properties [107]. In
particular, the system employs a magnetic field to selfrab&ea set of tiles whose surfaces are

diffraction gratings. By applying different magnetic fis|dhe authors can create different config-

40

urations of the tiles and thus different optical patterns.

Researchers have also explored the use of folding to creatgjeammable matter systems [40,
4]. These systems use flexible wiring and shape memory atitwators embedded in composite
sheets to programmatically create origami-inspired shag®y controlling which actuators are

energized, the system can form multiple different shapes.

2.3 Self-Assembling Systems

Self-assembling modular robotic systems are collectionadules that are capable of autonomously
coalescing and bonding with their neighbors to form a gresitacture. The result is often robotic,
but it need not be. Whether a system is capable of self-adsgmsé independent of whether it

is free-form, a chain, a lattice, or a truss-based systermoAt all of aforementioned modular
robot systems rely on human intervention to assemble. Int@mpat to automate the process
of creating intricate modular robotic systems, reseaschare attempted to mimic and improve
upon natural self-assembling systems. Whitesides et\astigated a wide variety of engineered
self-assembling systems [124, 125, 30].

Miyashita et al. performed a more theoretical analysis ifassembly using pie-shaped pieces
to form complete circles [73] from pie-shaped pieces. Ingieeess, they followed Hosokawa et
al.’'s lead [41] and modeled the system as a chemical reac8bimizu and Suzuki developed a
system of passive modules capable of self-repair when glace vibrating table [103].

Computer scientists have also investigated theoretigaas of self-assembly in the context
of 2D tiles which selectively bond with their neighbors tarfosimple well-defined shapes like
squares [92, 1, 2]. Each side of every tile in the system hassociated bonding strength. When
two tiles collide, they remain attached only if their cuntiva bond strength exceeds a globally
defined system entropy. To form a specific shape, one mugjidasiet of tiles with the appropriate
bonding strengths.

Klavins et al. worked to develop intelligent self-assemblsystems that employ triangular
modules driven by oscillating fans on an air table to setfeasble different shapes [8]. The au-

thors employ knowledge of the module’s local topology anrimal module state so that each

41

module decides, in a distributed fashion, when to maintalireak a connection with its immedi-
ate neighbors. Griffith et al., also worked with intelligembdules capable of selective bonding to
show that self-assembling systems may self-replicate [38]

Mataric et al. [44] presented rule-based approach toasdémbly termed transition rule sets.
In particular, they present a method that, given a goal strac produces a set of rules shared
among all modules that govern when and where new moduledlanesd to attach to the growing
structure. Zhang et al. [48] expanded on this work by optingizhe size of the rule sets used to
form a specific shape. Werfel [120] also applied the idea odmasition rule set when studying the
use of swarms to assemble complex structures from passieziais.

Other groups have attempted to make self-assembly monendetistic. The MEMS robots de-
veloped by Donald et al. [23, 24] consists of thin, (7420, rectangular, (approximately 2[én x
60um), scratch-drive devices capable of moving on an insuladuigstrate embedded with elec-
trodes. The authors used four of these robots to build largeposite structures. The Sitti group
has developed a similar system of micro-meter sized rol3&fs |[nstead of using a scratch drive
for locomotion, the robots are manipulated by external reéigriields. The authors can electro-
statically clamp any number of robots to the stage on whielg thove. With all but one robot im-
mobilized, the remaining robot may be moved independeftig system naturally self-assembles

because the robots contain permanent magnets that altegranéighbors.

2.4 Simplifying Shape Formation by Self-Disassembly

The majority of existing self-assembly systems aim to fotractures in one of two ways. Some
systems such as [73, 103, 92, 1, 2] use a collection of apialicapecific differentiated modules,
that are only capable of assembling in a particular fasheoiotm a specific shape. In contrast,
other systems such as [8, 78, 121, 122, 108, 44, 48, 120] uspletely generic modules with

more computation and communication ability embedded ith @agdule. Both types of systems
aim to form complex shapes in a direct manner: as these stascgrow from a single module,

new modules are only allowed to attach to the structure iniipéocations.

We propose a new approach that eliminates many of the coitipterf shape formation by

42

active assembly. Our Smart Pebble system employs a settobdied algorithms to perform two
discrete steps: 1) rely on stochastic forces to self-askemblose-packed crystalline lattice of
modules and 2) use the process of self-disassembly to rethewextra material from this block
leaving behind the goal structure. By approaching shapmdtion in this manner, we hope to
speed up the entire process, eliminate any global infoomatliat must be distributed throughout

the system, and simplify the computing requirements of @actule.

2.5 Simulators

In the process of developing our Smart Pebble system, wieeddhat we needed a way to test and
debug the high-level algorithms which controlled the sHapmation process. Using the hardware
for development was too time consuming and difficult, so veatd a simulator, named Sandbox,
that is discussed in Chapter 4. Before deciding to creat®warsimulator, we explored existing
alternatives. To better understand our reasons for cee&amdbox, we present details of many
existing simulators here.

There a number of off the self robotic simulators designedfalti-robot system. Microsoft
Robotics Developer Studio [72] and Webots [119] are two sydtems that allow for high-level
simulation of traditional mobile robot platforms. The RéayProject [31, 89] is another popular
system for high-level robotics simulations. The Playerj&bprovides the Player network inter-
face that allows the simulated robots to execute on any mkedanachine. The Stage and Gazebo
components integrate with Player to simulate the world ircivthe robots exist, sense, and move.
Chen et al. have extended Gazebo to simulate the OpenRTiMediware framework [14]. While
these systems are great for rapid simulation of traditiomalti-robot systems, they lack the low-
level configurability necessary to accurately simulate ymandular robotic systems.

Many research groups have created their own mobile robailators. One of the first graph-
ical simulators was the system created by Kurokawa et althi®M-TRAN modular robot [62].
More recent simulators use a physics engine such as Opennbgsd&ngine (ODE) [80] or
PhysX [87] to simulate the interaction of the simulated medwvith their surrounding environ-

ment. Tolley et al. have developed one of the newest physiesed simulators to model the

43

stochastic self-assembly of their fluidic cubes [110].

Christensen et al. have developed the Simulator for SatbRiggurable Robots (USSR) [18]
which they have used to simulate a number of common modulastiosystems. The USSR
system is a physics-based simulator that aims to be eagiysikle to any modular robotic sys-
tem through the instantiation of a number of reusable coraptensuch as sensors and actuators.
USSR is written in Java, but the interfaces with low leveltcoincode written in C. Fitch and
Butler have also attempted to simulate a distributed rotsytstem containing millions of identical
modules [27].

Carnegie Mellon and Intel Research have jointly developeddynamic Physical Rendering
Simulator (DPRSIm) [91, 25] to assist in simulating the @a{@8] modules. DPRSIim simulates
the physics of the Catoms, but it appears to largely ignogecttallenges and unpredictability of
low-level communication between neighboring modules. BPPR like the simulator we present
in this paper, devotes a separate thread to each simulatechCdt appears that the CMU/Intel
team has improved the system so that it can be distributegsaonultiple host machines to allow
the simulation of systems with millions of modules [5].

Our Sandbox simulator builds on the best developments tifedle pre-existing systems. Sand-
box is a low-overhead, easily reconfigurable, scalable lsitouthat allocates an independent pro-
cess for each module allowing the simulated nodes to be tsgtom many separate workstations.
Most important, the program used to simulate each modulengpded from the same source code
that runs on the hardware. The only discrepancies existdw dbr differences in the low level

hardware. A full discussion of the Sandbox simulator is aordd in Chapter 4.

44

Chapter 3

Hardware

The unit modules developed in this thesis are cubes called the Smart Pebbles. The Smart
Pebble was inspired by our previous work in self-disassgmémonstrated with the Miche hard-
ware [34]. The Miche modules packaged power, communicatimmputation, and programmable
connectors in an 85ctrcube. The significant size reduction as we moved from the #lich
Pebble modules required hardware innovations that praotigions to inter-module power, com-
munication, and bonding challenges. Compared to the Micbéutes, the Pebbles are 50 times
smaller by volume, (as shown in Figure 3-1), about 5 timesngfer when normalized by module
weight, use gender-less connectors, and do not requirangioly. Each module in the Pebble
system is a 12mm cube capable of autonomously communiocatithg@nd latching to four neigh-
boring modules in the same plane to form 2D structures. Eaatpteted module weighs 4.0g
and may be rotated any one of four ways on the assembly plahst#irmate with its neighbors.
The major functional components of each module are poweitaggn circuitry, a microprocessor,
and four electropermanent (EP) magnets, which are redgerfsr latching, power transfer, and

communication. We estimate that in quantity 50, each mocisdés $365.

Each Pebble module is formed by wrapping the flexible cidatieled (a) in Figure 3-2 around
the brass frame labeled (b) that is investment casted a@@mdprinted positive model. The flex
circuit is a two layer design, and the entire stack-up iniclggolder masks is 0.127mm (5mils)

thick. The recommended minimum bend radius of the flex ditsdio times the material thickness,

45

Figure 3-1: The Pebble modules are 50 times smaller by val{@@enm vs. 45mm per side), and
5 times stronger by weight.

46

or 1.27mm. Therefore, we rounded the edges of the brass fratimé&.5mm radius fillets.

]
L

memm7.

0.5mm

40 50

(e)

mmlll'lm\l r T e

Figure 3-2: Each module is composed of a flex circuit (a), abfiame (b), four electropermanent
(EP) magnets (c), and an energy storage capacitor (d), winichnts to the bottom of tabs labeled

(€).

Figure 3-4 shows how the flexible circuit is stiffened witl2®4mm (10mils) of Kapton in
the six square areas corresponding to the six faces of thee dataddition to helping flatten the
faces of the cube, these stiffeners provide a rigid surfduelwprevents the solder bonding the
components to their pads from breaking under stress.

The flex circuit is secured to the brass frame using a set @&shiol the unstiffened portions
of the flex circuit that mate with nubs on the frame. These $ialed nubs align the flex circuit
to the frame, and by soldering the flex circuit to the framéhase points, we form a secure bond
between the circuit and the frame. This scheme allows farkgamd easy disassembly of a module
for service or debugging. Note, while a 3D system is thecadlyi possible, it would leave little

room for electronics inside each module. Additionally, gade arrangement of the EP magnets

a7

would need to be made 8-way or axially symmetric.

3.1 Connection Mechanism

Figure 3-2 also shows two of the four custom designed EP magised in each module. At large
scale, electropermanent magnets have been used for dekadésn miniaturized the technology
to operate at millimeter-scales [51]. We have improved @téthnology so that the EP magnets
can deliver power and provide communication in additiorgpgonmed connections. The EP mag-
nets are able to draw in other modules from a distance, meigrhold modules together against
outside forces (with zero power dissipation), communickta between modules, and transport
power from module to module. We used the jig shown in Figu&t8-align the EP magnets with
the flex circuit before soldering the EP magnets directlyadgon the flex circuit. When assem-
bled, the pole pieces of the EP magnets protrude slightiy tiee through the four sets of holes in

the module faces.

Figure 3-3: We used the jig shown here to align the EP magnigtsfiex circuit before they are
soldered together. The jig attempts to ensure that the pbdltee EP magnets are centered with
the cutouts of each face and that the EP magnet pole pieceageslightly through the faces.

48

3.1.1 Electropermanent Magnet Theory

Figure 3-4 shows a patrtially assembled EP magnet. Each ERenhagnsists of rods of two
different types of permanent magnet materials, capped sathiron poles, and wrapped with a
copper coil. One of the permanent magnets is NeodymiumBamon (NdFeB), and the other is
Alnico V. Both of these materials have approximately the saemnant magnetization, about 1.2
Tesla, but very different coercivity; it takes about 100d8riess applied magnetic field to switch

the Alnico magnet than the neodymium magnet.

Figure 3-4: Each electropermanent (EP) magnet assembbmgased of two pole pieces (a,b)
which sandwich cylindrical Alnico (c) and NdFeB (d) magnetie entire assembly is wrapped
with 80 turns of #40 AWG wire (e) and held together using epkywhich makes the Alnico
magnet appear larger than its NdFeB counterpart). Theuwaiseapacitor (g) used to energize the
EP magnet coils is soldered to the flex circuit (h) which wrapsund and attaches to the brass
frame (i) with a set of nubs (j). Once mounted, the EP magneisyze 0.25mm through the
stiffener (k).

The EP magnets are actuated as shown in Figure 3-5. A cunuése through the coil in the
positive direction (Figure 3-5(b)) switches the polariaatof the Alnico magnet so it is aligned
with the polarization of the neodymium magnet. In this casagnetic flux from both flows
through the soft iron poles and to the other ferromagnetjeapattracting it. The attraction
continues after the current in the coil is returned to zeligufe 3-5(c)). We call this the “on”

state of the connector. A current pulse through the coil earthgative direction (Figure 3-5(d))

49

switches the polarization of the Alnico magnet so it is opfgake polarization of the neodymium
magnet. The polarization of the neodymium magnet is unobdbgcause it has a much larger
coercivity. With the two magnets having opposite polai@atmagnetic flux circulates inside the
device but does not leave the poles, and thus does not exsgtda the other connector or external
ferromagnetic objects. Once again, this flux pattern coesmafter the current is returned to zero

(Figure 3-5(e)). We call this the “off” state of the connecto

To understand the origin of bi-stability in an EP magnetsitelpful to examine the B/H
(magnetic flux density vs. magnetic field intensity) plotwhan Figure 3-6. This is derived by
adding the B/H plots for Alnico V and NdFeB, since the two metgrhave the same area and
same length, and appear in parallel in the magnetic cirdeéssing a current through the coill
imposes a magnetic field, H, across the materials. The neguiftagnetic flux density, B, passes
through the air gap between the modules giving rise to aadve force. While a positive current
is flowing through the coill, it induces a positive magnetiddfidd, saturating the Alnico magnet
and driving the system to the point marked (a) in Figure 3-heWthat current is removed, the
system relaxes back to a new equilibrium, labeled (b), wisitpve flux but no field. This is the
“on” state. Momentarily passing a negative current throtinghcoil saturates the Alnico magnet to
the negative field side driving the system out to point (c)iguFe 3-6. Once the negative current
is removed, the system relaxes to the zero field, zero flux *itite marked by point (d). If the
magnets are pulled apart while on, a demagnetizing fieldappeeducing the flux and resultant

force.

The EP magnets used here are low average power but high peak gevices. Our system uses
a 20V, 5A, 30Qus pulse provided by a 150~ capacitor in each module to switch their state. The
time-averaged power devoted to magnetic attraction is roagrs of magnitude lower than would
be required using equivalent electromagnets. We calcthatean equivalent electromagnet would
consume 10W continuously. The EP magnet consumes 100W 060gs3vhen switching (on or
off). Therefore, so long as the EP magnet is switched lessdhee every 3ms, the EP magnet will
use lower time-averaged power. For more information abloeitBP magnets, including detailed

design guidelines and a quantitative model, see [51].

50

X

D (A 1

(b)w. ;

x

(d)‘ t

b=

(€) e

S -

x

Figure 3-5: Here we show a series of snapshots that captureadbegs of activating and then
deactivating an EP magnet. Each snapshot, labeled (a) through (e), captures the applied current,
operating point on the magnetic flux-field curve, and flux flow path.

51

®) (a)

@ @

Figure 3-6: The hysteresis curve for the EP magnet asserhblyssthe origin of the magnetic
bi-stability in the device. The current pulse which turne #P magnet on drives the system to
the point labeled (a). Once the current pulse is removedsytbim settles to point (b) where the
net remnant flux results in the assembly attracting neangrfeagnetic materials. To turn the EP
magnet off, a current pulse of opposite polarity drives tysesm to point (c). Once that current
pulse is removed, the system settles to point (d) where th@@net remnant flux. As a result, the
EP magnet does not attract nearby ferromagnetic materidlssaff.

3.1.2 Electropermanent Magnet Construction

The magnetic rods and pole pieces were custom fabricated/AyM&agnetics Inc. The magnetic
rods are grade N40OSH NdFeB, and cast Alnico 5, both 1.587nametier and 3.175mm long,
magnetized axially. The magnetic rods were fabricated bydsical grinding. The magnetic
rods were coated with im of Parylene by the Vitek Research Corporation. The polegsiare
3.175mm by 2.54mm by 1.27mm blocks of grade ASTM-A848 sofgnadic iron, with a diagonal
notch cut off to allow clearance when four are placed insglghanodule. The pole pieces were
fabricated by wire EDM, and chromate coated to slow cormsiod facilitate solderability. We
assembled the rods and pole pieces with tweezers under fication, using the mounting plate
shown in Figure 3-7 to hold the pole pieces and magnetic nogsition while we glued them
together. The rods are glued to the pole pieces using Lddyisel E-60HP 60-minute work time
epoxy (Henkel Corporation). After assembly, we ensuretittieatwo pole faces were co-planar by
rubbing the assembly against a 320 grit aluminum-oxiddilteld abrasive file (McMaster-Carr).
Then, we wound an 80-turn coil around the magnetic rods us#tgAWG magnet wire (MWS

Wire Industries). For more details about the fabricatioocpss, see Knaian’s thesis [51].

52

Figure 3-7: We used this jig to hold the magnetic rods in atignt with the pole pieces while
applying epoxy to form the basic structure of the EP magnets.

3.2 Power Electronics

The four EP magnets in each module are driven by a set of 2mars®lOSFETSs which are capa-
ble of handling the 5A required to switch the EP magnets hda Semiconductor FDMA2002NZ
and FDMA1027P). In order to reduce the component count, wendi dedicate a full H-bridge
to each EP magnet coil. There was just not enough space laeaitside each module to do so.
Instead, each EP magnet has one dedicated half-bridge ctedrte one side of its coil. We call
these the “face-specific” drivers. The other sides of the ¢oils are tied together and serviced by
a single “common” half-bridge as shown in Figure 3-8. Usihig tonfiguration, we are able to

pass current in both directions through each of the EP mangriist one coil at a time.

The two control lines for the common half-bridge are driventbe microcontroller’s timer
output compare pins. Using the output compare pins we casisgig control the duration and

spacing of the current pulses flowing through the EP magnikst co

53

Face-specific B
Half-bridges _.--

/_OI
.
,
/
i
\
Ny _|

(driven by gi;eneral—\\
purpose 10 pins) —

Common Half-bridge /
] Rpy (internal to procssor)
! Comparator
(internal to processor)

drives timer
input capture

driven by timer output
compare channels

|
|
1
1

i PWM Si(%nal
(driven by timer output
compare channel)

Figure 3-8: The four EP magnets are driven by a set of four-épeeific half-bridges and one
common half-bridge in order to reduce the modules’ compbrennt and circuit areaCcoup
allows the processor to detect communication pulses fraghbering modules. Except for four

level shifters used to drive the PMOS devices, a voltagelatgy LED, and the processor, this is
essentially the entirety of the electronics in each module.

54

3.3 Processors

Each module is controlled by an Atmel ATmega328 processactwbffers 32KB of program

memory and 2KB of RAM in a 5mm square lead-less package. Tanmee the external com-

ponent count, we employ the processor’s internal 8MHz R@lagar to clock the processor. We
routed the processor’s SPI and debugWire pins to pads onutiséle of each module. We con-
structed a test fixture (see Figure 3-14) to contact these\pild spring-loaded pogo-pins allowing
us to communicate with, reprogram, and debug the moduleervWdaded with the shape dupli-
cation algorithm discussed in Section 7, we come close tgqptetely filling both the processor’s

flash and RAM.

3.4 Bonding

In each module, the microprocessor sends control signéetpower electronics which allow the
modules to mechanically bond with their neighbors. To ctigréze the strength of these bonds,
we performed a number of pull-test experiments with two hieaying modules [33]. One module
was mounted on a linear motion stage, and the other on anaingewith a load cell measuring
the force along the air bearing’s direction of motion. Thperxmental setup is shown in Figure 3-
9. For each pull test trial, the module attached to the matiage is connected to an external power
source through an attached magnetic connector. The litege grives the modules together, and
when they come into contact, the second module powers upe Both modules have power, they
exchange messages and energize their EP magnets. Thedwad timing of these energizing
pulses controls the strength of the resulting connectiorce@he modules are bonded, we measure
the strength of their connection by driving the motion stagé¢hat it pulls the modules apart while
recording the force exerted on the load cell. The force orldad cell grows until it reaches the
connector’s bonding strength at which point the two moduobgsapart.

The normal bonding force resulting from three differentlhang waveforms is shown in Fig-
ure 3-10. The average holding force, (over nine tests),vior asynchronous pulses, (one from

each magnet), was 2.16N. When both magnets were pulsedreyiocisly, the resulting force was

55

Figure 3-9: To characterize the bond strength between hergjig modules, we fixed one Pebble
module to a linear motion stage (a) and another to a linedvesring (b). The opposite side of
the air bearing was attached to a load cell (¢c) which meaghestbrce between the two modules.
Once the two modules were bonded, the motion stage pulletbitkile away from the other while

we recorded the force exerted on the load cell.

2.06N (averaged over 15 tests). When both magnets weredosytsehronously twice, the average
peak force was 3.18N (averaged over 4 tests). These resaks physical sense. Synchronous
pulses produce a stronger magnetic field, and repeatedappii of this field drives the EP magnet

farther into the first quadrant along its B-H curve resulim@ larger remnant flux.

In addition to the normal force required to separate two nesjwe measured the shear force
between two modules using the same fixture. It was difficubdparate the effects of friction
from the shear magnetic force. Five shear tests yielded$onf 0.22—0.83N with an average of
0.69N. Finally, we measured the remnant normal force afientagnets had been switched off to
determine whether unused modules in an ensemble wouly sapihrate from the goal shape. In
ten trials, we were unable to measure any remnant forcerigttie modules together after their
EP magnets had been deactivated. (The measurement nosefofde sensor is zero-mean with
a standard deviation of 0.0068N.) We can use the fact thatgnet@ally suspended EP magnet
naturally falls off of its mating surface when deactivatedupper-bound the remnant force by

0.002N (the force due to gravity on a single EP magnet).

Returning to the normal force pull test results in FigureG3-dll three traces show an initial

56

Electropermanent Magnet Latching Strength

w
a1
1

—— Two Synchronized Latches

- — — Two Asynchronous Latches

—-— One Synchronized Latch
One Synchronized Unlatch

w
T

n
a1
T

N
T

[N
T

Cube-to—Cube Normal Force [N]
o =
ol ol

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Stage Displacement [mm]

Figure 3-10: The latching force between modules is strangben each module energizes its
magnet assembly with two synchronized latching pulsesesptar enough apart that the 150
reservoir capacitors have time to recharge [33].

linear rise in force with displacement, corresponding t® ¢hastic deformation of the modules,
(and the load cell spring), as they are pulled apart befagenhgnetic connectors separate. A
peak is reached, and then the LED in the load-cell-side neodxlinguishes, corresponding to
separation of at least one pole of the connectors, and tbe figcreases as the air gap distance

between the magnets increases.

The distance over which the connectors remain in contadteastage displacement increases,
(the distance from 0 displacement until the peak force)vides a way to measure the tolerance to
non-uniformity and misalignment in a large collection ofaates. A large network of modules is
mechanically over-constrained, so one might be concerhedtdhe ability to get reliable power
transmission between modules, which requires continuontact. From the pull tests, one can
see that a displacement between 0.25-0.35mm (2—3% of #ieriotule size) is possible before
separation, allowing a large network of modules to achieeeipion connector alignment through

elastic averaging.

In the single synchronized pulse experiments, (red dashirsoin Figure 3-10), we observed

57

a plateau in force following the peak, before the rapid desee Observation was difficult, but it
appeared that the plateau corresponds to a case where endf pfloé connectors is still in contact
while the other is separated. After separation, there isvacomtinuous jump in the data down to a
lower force. We suspect this is because, after the conrseaterpulled apart, and the contact force
has been removed from the system, the magnet pulls away aga atatic equilibrium between

the magnetic force and load cell stiffness is reached.

Figure 3-11 illustrates the coil current and voltage dudargingle synchronized pulse. Looking
at the voltage and current data, we can see that the cur&ctiese a momentary peak and then
decreases during the pulse, indicating that the magneteriabis not saturating during the pulse,
but that the peak currentis instead limited by the dischaftfge capacitor. This was the inspiration
for the double synchronous pulse, (which energizes thes eoflecond time after waiting for the
capacitor to recharge), and as Figure 3-10 shows, it doeb r@digher force level. The force
measured for the double synchronous pulse is 72% of the 4gdikefmeasured in [51] for a single
magnet being pulled away from an iron plate, in which a stifiver supply was used and full

saturation of the magnetic material achieved.

In addition to testing the modules’ ability to remain conteel; we wanted to verify their ability
to draw in and latch with other modules in close proximity. Wéeformed two different experi-
ments. In the first, one module had its magnets off while tireroimodule had its magnets on.
One module was fixed while the other was free to move on thestioky side of cellophane tape.
The modules were aligned and their faces parallel. In 3&{tiae modules always successfully at-
tracted and latched when their initial separation was 2m8irhe second experiment was identical
except that the magnets in both modules were energized.dh3Btrials, the two modules latched
from an initial separation of 4.31mm. These experiment®erage the idea that a collection of
modules will be able to successfully self-assemble in thesgmce of stochastic environmental

forces.

58

EP Magnet Coil Voltage During Synchronized Latching Pulse
20 ‘ : : ‘ : : :

10}

Coil Voltage [V]

-50 0 50 100 150 200 250 300 350
Time [pusec]

EP Magnet Coil Current During Synchronized Latching Pulse

L -

-50 0 50 100 150 200 250 300 350
Time [usec]

Coil Current [A]
N

Figure 3-11: The EP magnet coil current peaks and then fatisgl a 30Qus latching pulse indi-
cating that the magnets are not fully saturated. The cudees not reach a plateau because the
capacitor discharges too quickly [33]. (Ignore the shoitawng transients in the current data.)

3.5 Communication

The EP magnets form an inductive communication channel dertweighboring modules. In
short, when two EP magnets are in contact, they behave kesaliL:1 isolation transformer. We
utilize this fact to transfer data between modules withdigicting their ability to latch together.
All inter-module communication occurs at 9600bps usingreesef 1us magnetic pulses induced
by the coil of one EP magnet and sensed by the coil of the nergiddEP magnet assembly. The
presence of a singleus pulse during a bit period signifies a logical ‘1’ while thekaf any pulse
signals a ‘0’. Neighboring modules transfer data using gailsf the same polarity as the pulses
used to latch the EP magnets. As a result, there is no riskedbthhing strength decreasing over
time during intensive communication.

Because the four EP magnets share a common half-bridgeitgee B-8), a module is unable
to discriminate between incoming messages if it is listgrior messages on multiple faces. To
select the face on which the module is listening, the faezifip high-side MOSFET of one face

is turned on while the three others coils are left floatingdifidnally, the common side of all four

59

EP magnet coils is left floating, but it is capacitively coaghbyCcoyp to the processor’s analog
input. The internal pull-resistoiRpy) on this analog input is enabled. Internally, the processor
routes this signal to the inverting input of its internal mgacomparator. Figure 3-8 shows the

components used when receiving a message.

The non-inverting input of the processor’s comparator igesir by a DC voltage that we gen-
erate by low-pass filtering the output of another of the psso€s timer channels. Specifically, we
employ one of the processor’s output compare channels tergtna variable duty cycle square
wave. Figure 3-8 shows hows this square wave is filtered byssiymfirst-order RC filterRgiier

andCejier) to produce DC level which varies with duty cycle.

The module sending data to a neighbor does so by applyin@® pulse between the face-
specific side and the common side of one of its EP magnet ¢tiiis. pulse will induce a current
flow from the face-specific side to the common side. Becaus&Bmagnets in the neighboring
modules are oriented north-to-south, their coils are &ffely wrapped in the opposite directions.
Therefore, the current induced in the receiving modulei$ wdl flow from the common side
to face-specific side. The current drawn from the common siflebe be sourced by the AC
coupling capacitor. Figure 3-12 illustrates the negatjeeig voltage spike that is induced across
the capacitor. Because the pull-up is enabled on analog tugmnected to this capacitor, the
inverting input of the analog comparator will see a nomiratage of VCC with short negative
excursions corresponding to the magnetizing pulses sethtedogeighboring module. When these
pulses drop below the threshold voltage driving the nomiiting input, the comparator’s output
will transition from low to high. These edges drive a timgpum capture channel so that they may

be carefully measured and interpreted as inter-moduleagess

The threshold voltage applied to the non-inverting musebecsed carefully. Figure 3-12 illus-
trates that there is a significant amount of cross-talk betviEP magnets on different faces. Even
if a module is not explicitly listening for transmissiongiin a given neighbor, if that neighbor is
transmitting, it will still induce negative-going pulsesthe inverting input to the listening mod-
ule’s internal comparator. While these pulses are smallenagnitude that the pulses that result

from a neighbor attached to the face on which the receivinduteis actively listening, they are

60

Tek i @ #cq Complete M Pos: 0.000s CURSOR |Tek S @ icq Cornplete M Pos: 0.000s CURSOR
+ +
Type
rnplitude

Source Source
CH1 CH1

b - b
b S b

T 1 Cursor 1
518

CHZ S00mY M 2500 CH2 500mY M 250us
E-Apr-12 1354

(a) (b)

Figure 3-12: The receiving EP magnet in a pair of Pebble nexisées negative-going pulses at
the input to its internal comparator. The threshold voltagainst which these pulses are compared
is critical because there is significant cross-talk betwadefaces. In particular, (a) shows that a
pulse resulting from a face to which the module is not cutyeligtening barely remains above
the threshold. In comparison, (b) shows a pulses from the dacwhich the module is actively
listening. It does cross the threshold, but only by 100mV.

not trivial. We have found that a threshold voltage of 4.050fks well in practice to differentiate

the two pulse magnitudes.

3.6 Power

The Pebble modules do not contain their own power sourcestedd, electrical power is dis-
tributed from one or more centralized sources and thenfeeesl from one module to the next.
In practice, we use the spring-loaded pogo pins of the testré&xshown in Figure 3-14 to sup-
ply 20V to what we term the root module. From the root, powerassferred between units via
Ohmic conduction of DC power through the soft magnetic pofeéie connectors. Each module
contributes a resistance of @3 Given that the quiescent current of each module is 15mA) eac
module in a chain results in a voltage drop of 4.5mV. In thear®0V source could power a chain
of 3266 modules before the voltage supplied to the trailinglute falls below the dropout voltage
of the regulator used to power the microprocessor. In gracthe ability of the EP magnets to
change state would be compromised after several hundredlesdTypical configurations will
consist of more than a single chain of modules thereby pnogichany parallel electrical paths

that would noticeably reduce the electrical resistancevden any two points.

61

Within each module, the EP magnets are mounted to the flexiGivehich serves as an elastic
mount, allowing slight bending as needed for the two magnatihnectors to achieve intimate
contact. When one magnet is turned on, it attracts any nesighbor; contact is achieved; the
adjacent module receives power, starts its program; antivibienodules communicate to drive a
series of synchronized pulses through their magnets to bworeé strongly. All of the magnetic
materials used in the connector are good conductors ofrigigtso it was necessary to coat the
rods of Alnico and NdFeB separating the two poles with Paiglt electrically isolate the two

poles.

Each module contains a 148 tantalum low equivalent series resistance, (low ESRgrves
capacitor. These capacitors, one of which is labeled (d)garg 3-2, are responsible for sourcing
the high-current demands of the EP magnets when they arehsmgton and off. These capacitors
fill the interior of each module and can only be installed otieeflex circuit is partially folded
around the brass frame. In particular, the capacitor isesettiby its ends to the bottoms of two

tabs labeled (e) in Figure 3-2 so that it floats, suspenddtgimterior of the module.

The connectors on the four mating sides of the module ardianand placed so that the
magnetic north is always on the right (when viewing the fagadion), and the magnetic south is
always on the left. Regardless of their rotations about &ovemthogonal to the assembly plane,
when two modules are placed together, the magnets will al@th-to-south. Internal to each
module, all of the north poles of the EP magnets are tied hagah one electrical net, and all
of the south poles are connected to another. Therefore, Imaia ©of modules, the north pole net
will alternate between serving as the electrical ground ted20V rail. This is illustrated by

Figure 3-13.

In a large network of modules, every circular path back todhme module passes through
an even number of connector pairs, so there is no arrangeimentan result in a short circuit.
Internally, a bridge rectifier is used to produce a voltagi\wnown polarity from the unknown
polarity present on the north and south pole nets. As a tdbeltmodules are four-way rotation

symmetric.

Additionally, a bridge rectifier inside each module allows & module to be flipped upside

62

Figure 3-13: In a lattice of Pebble modules, neighboring abeslalternate which of their magnetic
poles (labeled N/S) serve as the 20V rail (red) or electgealind (blue). The unknown polarity is
converted to a known polarity using a bridge rectifier, arghth linear regulator is used to produce
5V to drive the module’s processor.

down without affecting either the underlying electricaldgthat it forms with its neighbors The
main problem associated with inverting a module is that Rsrkagnets will begin to repel the
neighboring modules instead of attract them. This is bexthes magnets’ poles will align north-
to-north and south-to-south instead of north-to-south.

There are many advantages to replacing the batteries thypioand in robotic systems with
capacitors. Primarily, we are able to decrease both theasidecomplexity of the modules. Not
only are batteries significantly larger than capacitorsy tiequire additional protection and charg-
ing circuitry in addition to a step-up converter to produ@/Zor the EP magnets. Second, by
eliminated batteries, which are short-lived with respedither electronic components, we extend
the potential lifetime of the modules. Additionally, thehium-polymer batteries typically used to
robotic systems are more toxic than other electronics, andcegplode or catch fire if not handled
with care. Finally, we eliminate the need to recharge theutesiwhich can become a significant
inconvenience as the number of modules grows into the mdlio

One of the smallest lithium-polymer batteries availablgmies 3.7V, has a capacity of 170mA,
but occupies 2500 cubic millimeters[6]. To fit such a batietg our modules, the modules could
be no smaller than 25mm per side. The iB6Qapacitor in our modules is rated for 20V and only

consumes 130 cubic millimeters. As a result, our moduleoahg 12mm per side. By using a

63

capacitor rated for 20V, the same voltage used to energezEFhmagnets, we eliminate the need
for a step-up voltage converter. Such a converter would locegsary if we were using any less
than five lithium-polymer cells connected in series. By davdhium-polymer batteries, we also
eliminate the need for the charging and protection ICs yyitally accompany them. The only
power conditioning IC present in the modules is a simpledinegulator that produces 5V to

supply the microprocessor.

If, during the course of additional development, we find tit&t system must be untethered
from all power sources, we could create passive battery teedhat we mixed in with the active
modules described here. These battery modules would ker ldrgn the active modules but could

be fabricated with the connector connector spacing.

3.7 Test Fixture

We have developed a test fixture which we use when runningyzaedexperiments with the Peb-
bles system. It provides a method to supply what we term thienade with power, and it provides
a communication link between the root and the user’s petsmmaputer. The test fixture and the
mating pads on a Pebble module are shown in Figure 3-14. Tonconcate with and power the
root, the test fixture employs seven spring-loaded pogo thiasprotrude through an assembly
platform constructed from laser-cut acrylic. Two of theeseeonnections provide 20V to the root
module. Three provide standard the standard SPI bus sivMals|, MISO, and SCLK). One is
connected to the processor’s reset pin, which also serwbge aebugWIRE interface, and the final

connection is the signal ground for the two communicatiderfiaces.

The test fixture itself contains a second Atmel processdrsiiazes as a communication gate-
way. It communicates with the attached module using its &Hace. The test fixture is the slave,
and the Pebble is the master in this pairing. The test fixakeg whatever data it receives from the
Pebble and translates it to a low voltage RS-232 serial degar that it sends to an FTDI serial
to USB converter. When attached to the user’'s PC, the USBacteappears as a serial port. The

user can send data back to the root module through the sanmectlaterfaces.

64

Figure 3-14: Each Pebble module has a set of seven eleqiadal(a) on the outside of its bottom
face. These pads mate with the spring-loaded pogo pins st &xture (b) which provides power
and a communication link to the user's PC. The plunger (cseduo hold the module in contact

with the pogo pins.

65

3.8 3D Modules

The current generation of Smart Pebbles is only able to tpénahe plane. Furthermore, the
Pebbles cannot be flipped upside down. If they are, the EP etsigmhen activated, change from
attracting to repelling. To expand the number of practigglli@ations of the system, it needs
to be able to operate in three dimensions. We see threeatff@approaches to achieving a 3D
programmable matter systems.

The first option is the obvious solution: place EP magnetdl@ixdaces of the Pebbles making
them invariant to any 90 degree rotation. This solution ples the greatest flexibility and highest
degree of redundancy when assembling the modules into arGEigte.

The six-connector solution is not without drawbacks. The diecuits in the current version
of the Pebbles are already severely space limited. By adsWogadditional EP magnets, we
would eliminate the area currently dedicated to the praweasd power conditioning circuitry.
(The additional EP magnet would also require additionalats further increasing the component
density.) The EP magnets are large components with resptu size of the flex circuit and must
be placed in the center of each face. As a result, they sudedifaie remaining flex circuit area into
many small parcels that are difficult to utilize for compotseother than surface mount resistors
and capacitors. This awkward division of flex circuit areadanake it difficult to utilize an ASIC
that combined all of the circuitry into one IC. One way to althis problem may be to modify
the design of the flex circuit to create an additional “flogtiab” that occupies the middle of the
module and is large enough to contain the ASIC.

The second problem with placing EP magnet connectors oixdliees is that the connectors
would need to be redesigned. Currently, the connectorsrdyeenvay symmetric, but they would
need to be 8-way or axially symmetric in the 3D system. Fiduii& shows a cross-section of one
possible design of an axially symmetric EP magnet.

An alternative to employing six active faces in each Pebbl®icreate two or three distinct
types of Pebbles, each capable of bonding with neighborsgarate planes as shown in Figure 3-
16 One can think of this strategy as forming a structure asekstf unbonded layers and then

bonding the neighboring layers together with special “dytlane” Pebbles. We could continue

66

Figure 3-15: An axially symmetric EP magnet could be crebtedlacing two half round magnets
(a,b) next to each other to form a core than is then wound withila(c) and placed inside of

a ferromagnetic cup (d). A small cap (e) is attached to the@ssg end of the magnetic core to
prevent fringing fields from giving rise to attractive fosc&hen the EP magnet is deactivated.

67

using our current set of Pebbles for bonding in the X-Y pldng,we would then design two new
types of Pebbles (still with just four connectors) capalileanding in the X-Z and Y-Z planes.
Starting with a sheet of X-Y type Pebbles, we could replaceesof the modules with X-Z and
Y-Z modules. On top of each of these new Pebbles we would @aother X-Z or Y-Z module,

respectively. Then, the remainder of the second layer deifdled with the standard X-Y Pebbles.

Figure 3-16: By using distinct types of Pebbles capable ooty in either the X-Y, X-Z, or Y-Z
planes, we can create 3D structures using only four conreepgs module.

For a large structure containing an equal proportion oftaké types of modules, there will,
on average, be one third of neighboring faces which are notexted. In comparison to a system
in which there are EP magnets on all six faces, this will weake structure and limit the com-
munication pathways through it. As with the rotation ineati system, the connectors will need
to include additional degrees of symmetry because stacHastes will ensure that the modules

touch in every possible orientation.

3.9 Miniaturization

If we want to continue to shrink the Smart Pebble modules abtttey truly become Smart Sand,

we face many engineering challenges. We must miniaturite the inter-module connectors and

68

the modules themselves. We want our miniaturized moduldsetthree-dimensional particles
that are able to form three-dimensional macro-scale ahje€here are many microfabrication
technologies under development with potential to help aturize the Smart Pebbles. Despite
the variety of options, there are few, if any, automated @sses that could fabricate Smart Sand
without a large design effort. Many cutting edge microfeltion technologies are are focused
on just a single aspect of what will need to be a larger mtggp-sntegrated fabrication process.
Integrating these individual technologies into a procedhat is able produce a million grains of

Smart Sand will require significant effort.

3.9.1 Connector Technologies

In miniaturizing the connectors, there are good reasonsdntinuing to use EP magnets instead
of competing options. Primarily, EP magnets consume mihpowaer, are simple to control, and
exert forces that scales with their footprint area [51]. &Aivound 0402 inductors are already
fabricated in huge quantities. These surface mount deaiesoughly 1mm long, 0.6mm wide,
and 0.6mm tall. Smaller coils (0.5mm long and 0.2mm in diar)edre also possible [7].

In what follows, we compare EP magnets with several alteresit Mechanical connectors are
still the most popular bonding mechanism for modular rojertsl they are one potential alternative
to EP magnets. At scales larger than the Smart Pebbles, meaheonnectors provide favorable
properties such as large bonding forces, fully constramates, and favorable strength to weight
ratios. If we attempt to scale traditional mechanical laskciown to the millimeter-scale, they will
become increasingly difficult to fabricate and relativelggile. Additionally, mechanical latches
require precise alignment that is difficult to achieve at scgle.

Traditional electromagnets are another connector opt@ompared to EP magnets, electo-
magnets are simpler to construct and control. Instead araktypes of magnetic material, elec-
tromagnets can be built from a coil wrapped around a singdegoof iron or magnetic steel. Such
a device is on and attractive when the coil is energized ahdtbérwise. The most compelling
reason to avoid electromagnets is their large power consampConsider an electromagnet with

dimensions and holding force equivalent to EP magnets us#éuki Smart Pebbles. It is only a

69

matter of milliseconds before it is more efficient to use aminet than to keep an electromag-
net energized [51]. As we continue to shrink the Smart Peblgewer dissipation will become
increasingly important. In densely packed 3D structurgsairiicular, the modules must dissipate

a minimal amount of energy so that resultant heat does ntrioge® incapacitate the system.

As a compromise between electromagnets and the EP magingh tiest we present above, it
is possible to completely remove the high coercivity NdFe&gmetic rod from our design. The
remaining Alnico rod can be enlarged to fill the resultingdyadr the whole structure could be
miniaturized. The resulting device would still be an elepgrmanent magnet because once the
Alnico is magnetized, no additional energy is needed to taairthe system’s state. The main
advantage to this approach is that it can be utilized to &etaecontinuum of bonding forces [71].
This approach could also potentially simplify the EP magssembly process because in practice
it may be easier to wrap the energizing coil around a singlapmment than the two different

materials that we currently use.

The disadvantage to the Alnico-only EP magnet is the comtiexthanism. Instead of driving
the Alnico magnet to the two extremes of its B-H hysteresig&Lthe controller would need to be
capable of driving the magnet to its origin where the remmaaxgnetic flux is zero. Typically, this
requires multiple pulses of alternating polarity that dipstep the magnet’s flux closer to zero. Not
only will this approach require more precise control overamount of energy delivered with each
pulse, it may require a feedback mechanism as well. Finidlig,worth noting that this process
of driving the Alnico’s flux to zero will likely require morerergy than the current approach of

simply reversing its polarity.

Electrostatic connectors also pose an alternative to EmetagElectrostatic connectors func-
tion by applying a voltage between two insulated conduqtiages. The opposite polarities attract
and draw the plates together closing the air gap in betwele@ adivantage of electrostatic connec-
tors is that they are simple to fabricate and, like EP magudeisipate no static power (except what
is need to compensate for any leakage current). Karagdaérleave developed a millimeter-scale
modular robotic system that attempts to use electrostédgickbocomotion by plating aluminum

electrodes onto a SiOcylinder [47]. Despite their potential, electrostatic nentors have one

70

important drawback: they require high potential voltages small air gaps to exert forces compa-
rable to EP magnets of the same size. The voltages requinexftes be several hundred volts [47].
Knaian performed an analysis comparing electrostatic &ohBgnet connectors assuming that the
footprint and air gap of the two connection mechanisms was#éme [51]. He determined that,
for connectors ranging in size from hundreds of micrometeraany centimeters, the voltage re-
quired for the electrostatic connector to rival the holdimige of the equivalent EP magnet would
always exceed the breakdown voltage of the air gap. Consdlgu®r a given footprint area and
air gap, the EP magnet connector will always be strongerdtedactrostatic connector. This result
does not mean that electrostatic connectors should be abadd They are mechanically robust,
easy to fabricate, weight less than their EP magnet couantsypand, ignoring the high voltages

required, are easy to control.

There are also other, often biologically inspired, conimactechanisms that may be viable
replacements for EP magnets as well. Most of these dry aghagproaches take their inspiration
from geckos that that climb on vertical and inverted surdacBhe connectors operate using van
der Waals forces and generally aim to create patches of biggce area, fiber-like structures with
a large degree of nano-scale compliance. This compliarstétsan a maximal amount of contact
between the connector and an opposing surface thereby mzegrthe number of inter-molecular

interactions and the resulting bonding force.

Before we can employ these dry adhesives as inter-moduleectors, we need to ensure that
they can be switched on and off. In one approach, researtdaisated nickel paddles whose
faces were coated with polymer nanorods and whose movemvergscontrolled using a magnetic
field [79]. By default, the connector was active and the faxfdbe paddles were oriented parallel
to some opposing bonding surface. Because the nanorodsseved&iched between the paddles
and the bonding surface, the van der Waals forces were stidmgresulting pressure was 14Pa.
When a magnetic field was applied, the paddles twisted aheiribng axes, turning their nanorod
coated faces away from the bonding surface. In this configumathe bonding pressure exerted

was only 0.37Pa.
In another approach, researchers molded flexible sheetabfiiers and attached them to

71

a backing plate with variable stiffness [57]. To control thending force of their material, the
researchers formed a bond between the fibers and the roupda#dtglass rod while the backing
plate was soft. Then they stiffened the backing plate. Téssilted in a pull pressure that was

much greater than what resulted when the backing was lef fiekible state.

3.9.2 Unit Module Fabrication

The current approach to modular fabrication involves wiag flexible printed circuit board
around an investment casted brass frame. The flexible PGiisrhanually held in place while
solder connections are formed to hold the flex circuit to taene. This approach is cumbersome,
time consuming, and unlikely to scale well to smaller dimens for many reasons.

We are currently pushing the resolution limits of investineasting. Other technologies for
fabricating metal frames do exist. Whitesides et al. havwaatestrated the assembly of 3D
millimeter-scale metal trusses produced by folding 2Dtetgxtated nickel forms [9]. Two-photon
photopolymerization is way to make even smaller 3D str@guhat have nano-scale resolution.
The process uses a precisely focused laser to polymeridethareby solidify, liquid monomer.
The polymerization only occurs in a small volume where tisetantensity surpasses a non-linear
threshold. The newest implementations can create indyeititsicate 3D structures [20]. Struc-
tures created using 2-photon photopolymerization cankaagsed as scaffolding and coated with
substances like Parylene [59].

Neither the metallic or polymer-based frames are eledlyieative. We will need to attach
connectors, communication, and processing components p@ssibility is to continue wrapping
an active, intelligent skin around the frames. Instead afdpan polyamide-based flexible printed
circuit, the skin could be formed from SpQ47], SU-8 [99], or SiN [117], for example. The
flexures between the faces could be fabricated from goldd®9jN [117].

Once the frame and skin have been fabricated, they must benblsd. Automated pick and
place machines already handle 01005 surface mount comisomkith are only 0.4mm by 0.2mm.
The same automation technology could be applied to aligrirdmes onto a panel of unfolded

skins. Many options exist to automate the folding of the skanound the frames. Researchers

72

have used internal stresses [47], electron beams [12&\csuiension [127], capillary forces [117],
Lorentz forces [99], and even biological cells [58] to foldtfsheets into three-dimensional struc-
tures. Simple mechanical latches, electroplating, or lagdding could be used to permanently

anchor the skin to each frame.

There are other alternatives to folding active skins aroomskive frames. Wood et al. have
developed a “pop-up book” technology that enables thedaban of complex three-dimensional
objects from two-dimensional sheets [126]. The processsein the precise alignment and bond-
ing of many intricately cut layers of carbon fiber, adhesargj polyamide. After bonding, the part
is then singulated from the larger composite sheet and dedol The resulting three-dimensional
structures can display exceptionally high aspect ratind, they may integrate active electronic

components [104].

Future Smart Sand modules may also be construct in threendiores using layered processes.
EFAB (electrochemcial fabrication) is a commercializedqass developed over ten years ago that
prints complex three-dimensional structures [21]. Thddpsocess deposits thin (seveyai)
layers composed of metal surrounded by support materialce@me layers are complete, the

support material is removed leaving just the bonded meyaltabehind.

Other researchers have formed micro-scale structuresablgisg thin silicon components us-
ing a compliant probe fabricated from PDMS [49]. As an examl their technology, the re-
searchers were able to create an object resembling a hesresp2O@m in diameter, by stacking
seven silicon rings with different diameters, each 1Q480thick. Once stacked, the pieces can be

bonded with a high temperature annealing process.

With respect to future Smart Sand modules, the advantagesing) silicon to fabricate the
structure of each module is that the required circuitry anelligence could be built directly into
the structure using traditional IC fabrication procesSasenable the distribution of the circuitry
over several silicon layers, and to route control signaltheactuators, we will need to utilize
through silicon vias (TSVs)—metal connections that addteleal connections to the backside of

a silicon die [106, 26].

Finally, there are new approaches to microfabrication #tegmpt to create monolithic 3D

73

spheres directly [116, 13]. Because these approaches duuitdtthe spheres from layers, they
may be quicker and and more precise from those that do. Wéalmve that spheres, because of
their uniformity and lack of sharp edges, may replace cubdb@basic shape of the Smart Sand
modules. The disadvantage to spheres is that they shammalisiirface area with their neighbors,
So the associated connection mechanism must have a higlgtstite area ratio.

While this section has not addressed all of the potentidleinges associated with miniaturiz-
ing programmable matter modules, it has attempt to addnessgjor components and processes
that will be necessary to further shrink the Pebble modulzseful analysis and many trade-offs
will need to be made in order to select the best approach toduniniaturization. Along the
way, unforeseen challenges are certain to arise. Ultipatet most difficult challenge will be

integrating all of the fabrication steps into a single, atnéined batch process.

74

Chapter 4

The Sandbox Simulator

We have developed the Sandbox simulator to test our highl-Ehape formation algorithms on
scales larger than those afforded by our hardware platféktnile we produced fifty Smart Peb-
bles, we want to ensure that the algorithms we developed numuach larger two- and three-
dimensional systems. Before we begin explaining theserighgas, it is best to understand the
Sandbox simulator because it was used extensively whileldewng, testing, and debugging the
algorithms. Sandbox allows engineers and scientists talatendistributed robotic systems more
accurately and quickly than existing alternatives. It wse=alistic communication model grounded
in hardware experiments. Using a network of 8 workstatiaresare able to simulate a collection

of more than 2,000 Smart Pebbles communicating and execatirariety of algorithms.

Sandbox is focused on simulating algorithms and commuican distributed robotic sys-
tems, and a block diagram of the system is shown in Figure Bhg. simulator has a number of
advantages over existing turn-key systems. First, it itabt& while maintaining its compelling
performance. Each module runs as an independent procesamdunicates with other mod-
ules and the simulator framework using UDP and TCP packe¢sor®l, the simulator is built
with a modular architecture that supports distributed etien. The virtual modules in the system
can be executed on any number of networked computing noddstha simulator visualization

environment can be executed on yet another.

Third, Sandbox is generic and can be used with any modulat system. It enables the user

75

s

CLI
> ins 0:1 0:1 ZO

-

>

GUI ..
o]

__HostOne) {__ HostTwo) {_HostThree)

T

Figure 4-1: The Sandbox simulator system simulates eadbtioimodule as a separate process.
Instead of their native communication interfaces like IRD$photodiodes, the modules commu-
nicate with their neighbors using UDP packets. As a reduét,nhodules can be executed across
multiple networked hosts allowing the simulation of hugsembles of robots. There is a simple
command line interface with which the user controls theesystA 3D GUI allows the user to view
the topology of the robots in the system as well as observeoth@’s internal state in real-time.

to reuse the vast majority of the code that comprises a rootitrol software in both simulation
and hardware. As shown in Figure 4-2, the process of adagtirgxisting modular robotic system
to our simulator involves replacing the only the lowestelephysical communication layer with
calls to Sandbox-specific functions that send UDP packetstodule’s neighbors. In particular,
Sandbox provides two basic communication functions: semeéssage to a neighbor and attempt
to receive a message from a neighbor. All higher-level comigation and application code can be
reused regardless of language or complexity. This highegtcode is system-specific and includes

the algorithms that give the modular robot system its unajuibties.

This light-weight approach of only replacing the physicatdware layer with simulator code
guards against bugs that result in the normal porting psofresn simulation code to hardware
code. This approach also ensures that it is easy to use Sandlihcalmost any modular system.
In addition to replacing the physical layer code with Sandbpecific code, the user is free to
instrument his higher-level code in order to convey intestate information from the robot to
the simulator GUI. This instrumentation process is as seagl providing a list of variables to be
monitored to an instrumentation thread that sends a TCPep&akhe GUI whenever one of the

variables changes state.

76

[High-level Application Code | [g
— - —
_ (Architecture Specific) y ..g
£
[High-level Communication) | 3
~
9 (Architecture Specific) D E
/_ OR_\ 8
Physical Sandbox 2
mms. Layer mms. Layer 3
kCo s. Laye Comms ayer | | o |

Figure 4-2: To use Sandbox with an arbitrary modular robstesy, the user must replace the
physical layer code with Sandbox-specific communicatiorcfions that allow a simulated module
to communicate with its simulated neighbors. The user msxy @hoose to instrument higher-level
control code so that the module’s internal state can beaisplin the simulator's GUI.

Sandbox excels over more established simulation systechsasuPlayer/Stage/Gazebo or We-
bots when it comes to accurately simulating large collestiof computationally impoverished
modules with imperfect communication channels. Theseraygtems are focused on simulating
more traditional mobile robots in human environments. Imparison, Sandbox was designed
for million-module ensembles of small robots that intenaith the world in a radically different
way than does a mobile robot. Sandbox models the unreliadleaof real-world communication
links between neighboring robots. This allows Sandbox ttebgerify that theoretical algorithms
will operate as expected in the presence of communicatituréa when implemented on tangible
hardware that suffers from less than ideal neighbor-tgit@r communication links.

Unlike many existing simulation systems, Sandbox systenoigocused on simulating robot
dynamics or the physics of the world in which the robot residé/e chose not to integrate this
functionality into Sandbox for two reasons. Sandbox is prity focused on simulating com-
munication algorithms. Attempting to do more makes the $on more complicated and raises
the barrier to adoption. Additionally, many other simutatalready do simulate module physics.
These existing physics simulators could be layered on t&aoflbox to form a hybrid simulator.

At the most basic level, the physics simulator would detaewihich modules are neighbors and

77

hence, which modules can communicate with each other. $andiuld take this information
and actually enable the low-level communication betweemtbdules. Because the Sandbox sys-
tem is more concerned with algorithms and communicatiargritalso be used to simulate sensor
networks and other non-robotic distributed systems.

Modular and distributed robotic systems continue to gromumber and size. Advances in
computation, fabrication, mass production technologypageanied by ever decreasing prices have
enabled scientists and engineers to create distributellig@int systems with ever growing num-
ber of nodes. In the Robot Pebbles system, in particular,revéndéerested in using hundreds of
thousands or millions of modules to form objects throughacess of self-disassembly. Before
researchers commit to building larger and larger robotgtesys, it is valuable to employ tools
that allow for these systems to be thoroughly tested andgipai Additionally, after deploying
a large distributed system with anywhere from ten to mikiofmodules, researchers will benefit
from tools that enable the evaluation of algorithmic changgile avoiding the need to modify the
entire ensemble of robots to test each change. While thevaaeds the ultimate testbed for our
shape formation algorithms, we developed the simulatorakenalgorithm developing and testing

faster, easier, and more reliable.

4.1 Simulator Design

The Pebbles have several unique features that we wish tareaipt the simulator. First, the
communication between Pebbles is probabilistic. Due ®&instraints within the 12mm Pebbles,
the circuitry controlling the EP magnets was designed shahdnly a single EP magnet can be
active at a given time. While this does not impose notewordisyrictions on a Pebble’s ability to
bond with its neighbors, it does affect how a Pebble comnatagwith its neighbors. A Pebble
must divide its time between listening and transmitting sages on each of its faces. If a Pebble’s
neighbor is not listening at the same time that the Pebblé&esn@ting to transmit, the message

will not be received. Each Pebble executes a simple loop:

1. Listen on each face in random order for a fixed amount of time

78

2. Update state and queue messages for transmission
3. Attempt to transmit any pending messages

4. Repeat

The consequence of this loop is that a given Pebble is ortlniisg for incoming messages
on a given face less than a quarter of the time. In practide réisults in a message transmission
success rate of approximately 25%. This mirrors the harellvahavior as illustrated by Table 5.3.

Second, the alignment between neighboring Pebbles is nigicpeThe Pebbles are assembled
manually by wrapping a flexible printed circuit around a Braame. This results in slight non-
uniformity between any two Pebbles. As a result, in a largeestble, there are inevitably some
neighboring Pebbles that cannot communicate. Additignilis possible for the EP magnets to
break which also results in a Pebble that is unable to comratewith one of its neighbors. While
the total percentage of broken links in a structure is sriatjll important to simulate if we want
to ensure the robustness of our algorithms.

Our goal in designing the Sandbox simulator is to captureghmique features of the Robot
Pebbles system while ensuring that the simulator is extenand easily adaptable to other dis-
tributed robotic systems. The simulator is controlled tigloan interactive command line interface

with a basic set of commands:
e ins X y [Z] rotation [hosf
® ins Xmin:Xmax Ymin:Ymax [Zmin:Zmax rotation [hosf]
e rem X y [Z] rotation [hosf
® rem Xmin:Xmax Ymin:Ymax [Zmin:Zmax]
e rem all

e restart Xmin:Xmax Ymin:Ymax [Zmin:Zmaxl

e restart all

79

e quit

The ins commands insert new modules into the simulate; commands remove modules
from the simulator, andestart commands restart a simulated module without changing #s po
sition, rotation or UID. The coordinates passed to the comimanay specify a single point or a
contiguous set of points. If the z-coordinates are omitieel simulator assumes z-coordinate is 0.
The hostparameter may be omitted from thes commands if the user wants the host on which
the module is run to be assigned automatically.

The simulator’s output is a topologically accurate, intéikee visual representation of all mod-
ules created using OpenGL. The user can rotate, pan, and zisoriew of the system to get the
necessary perspective. By hold the mouse cursor over atigyggar module, the user can see the
module’s internal state. More generally, the resultingudator has a number important features:
each robot runs as an independent process; the simulatdreinal is separated from the robots
being simulated; a single code-base can be used for bothatidevare and simulated robots; and

communication between robots is not idealized.

4.2 Process Distribution and Code Reuse

The simulator is designed to run the exact same robot cooiaé as runs on the physical hard-
ware. Unlike many other simulators, our approach does no¢mtk on the user to maintain two
distinct code bases: one for simulations (in Matlab for eplnand another for the hardware (in
C/C++ for example). Instead, we reuse the hardware codeibabke simulator by replacing the

hardware abstraction layer with simulation-appropriatections that replicate the hardware func-
tionality in a realistic manner. The user switches betwéensimulation and hardware code by
defining a single macro at compile time. We leave all of thenHayel functionality untouched.

With this virtual hardware abstraction layer in place, weorapile the code for the workstations
used to perform the simulation. Then, to run the simulatve®&use the workstation’s underlying
operating system to start a separate process for each miodile simulated system. Because

each module runs as its own process, the simulator is a tdght§i analogue for the hardware.

80

The operating system automatically manages task switcfinghermore, in multi-core systems,
modules can truly run in parallel with no additional effaxirin the designer.

In the Smart Pebbles system, the simulator-specific code imsplace of the hardware ab-
straction layer handles three tasks: communication betwesdules, communication between a
module and the user’s PC, and flashing a LED. The inter-mochhemunication scheme is ex-
plained in the next section. In short, it uses UDP packetenad snessages between modules.

Simulating the communication between a module and thesiB&is accomplished with Linux
pseudo-terminals. In the hardware system, each Pebble thaseawire serial communication
interface that it can uses to receive commands from the usertarn state information. With
the aid of a external microcontroller-based protocol comrethis interface appears as a serial
port on the user’s PC. Typically, the root module is the ontydade in an ensemble utilizing this
interface. If the system is being used to form shapes threetffdisassembly, the user sends an
encoded description of the shape to be formed over a serigltpmugh the protocol converter, to
the root module, where it is distributed to the remaindehefrnodules in the system. As already
mentioned, to simulate this interface, the simulator ey pseudo-terminal. In particular, the
root module creates a new pseudo-terminal (&dgv/pts/0) that can be opened for reading and
writing just like a serial port (e.g/dev/ttyS0).

Finally, the simulator code emulates the LED in each Pebpleeplacing the LED with a
binary state variable. Turning the LED on sets this varigdhel turning it off resets it. The state of
the LED, along with many other internal state variables;daagmitted to the simulator GUI over a

TCP/IP connection whenever the state changes.

4.3 Communication

To accurately simulate communication between modules amgilble system, the simulator uses
UDP (user datagram protocol) packets sent over an IP canne&oth the source and destination
of a UDP packet are specified by a address/port pair. An aslises typical IPv4 address such
as18.70.0.160 while a port is a 16-bit unsigned integer ranging from 0 toE5UDP, unlike

TCP, is a connection-less protocol that does not involvelslaaking or error correction. There is

81

no guarantee that a given UDP packet will be delivered toastidation, nor is there an automated
method to determine if it has been. The sender must imples@ane higher level protocol to
determine whether a UDP exchange is successful. Fortyn#ted is a perfect model for many
robot applications that use low-level communication desilikke IR LED/photodiode pairs, simple
radios, or in our particular case, electropermanent magmetsuch systems, the communication
handshaking protocols are customized and built into thett®hpplication code. For example, the
application code must modulate an IR LED and then wait forex#ig response from its neighbor
detected by photodiode to know that the message has beegsstidty received. UDP messages

take the place of the LED and photodiode in the simulator.

In the Sandbox, each inter-module communication interfaficeach module is assigned a
unique UDP port number. Through the use of command-linenperers and a online control
port, each module knows the IP address and port number okigbloring faces with which it is
in contact. To successfully send a message to a neighbdratiemitter must send a message and
wait for a confirmation that it has been received. The recemt only respond if it is actually
listening to the port where the transmitter sent the messHgée receiver is not listening, the

transmitted message will be lost.

The transmission algorithm in shown as Algorithm 1. Firsid anot shown in the listing,
some higher-level function loads the message to be senaifstce-specific transmit buffer. Then,
the transmitter performs a non-blocking write to its neighdaddress/port combination. The data
written is a message sequence number prepended to theraesgdge in the transmit buffer. After
the non-blocking write, the transmitter performs a numberam-blocking reads until all data has
been flushed from the port’s receive buffer. If any one of¢fresds contains an acknowledgment
(ACK) message with a sequence number matching that of tiggnatimessage, the message has
been successfully received by the module’s neighbor. Thetime a message is transmitted, the
sequence number will be incremented to differentiate treenvessages if their contents happen
to be identical. If a matching ACK message has not been reddiy the time the port’s receive
buffer has been emptied, it indicates that the neighboringute is not listening at the current

time; the message to be sent will be left in the transmit buéad the sequence number will not

82

be incremented.

Algorithm 1 Inter-module Message Transmission

. txDatagramsequenceNumtxSequenceNum
: txDatagrampayload=txBuf fer
. setBlockinggockef false)
. write(socket txDatagran)
repeat
rxDatagram= readéocke}
if rxDatagramsequenceNumtxSequenceNuthen
txSequenceNus
txBuffer=0
return true
end if
: until rxDatagram= 0
: return false

PNROOENDUAWNE

To receive a message from a neighbor, a module uses the apmbawn in in Algorithm 2
which complements the transmit algorithm. To initiate tkeeive process, the module starts a
timer and then performs a blocking read of the UDP port assediwith a particular communi-
cation interface. If the timer expires before the read retwith a message, the read call will be
interrupted and return without data. This indicates thattiodule’s neighbor was not transmitting
anything, and the read call is aborted. On the other hanlae if¢ad returns data and the interface’s
receive buffer is empty, the received payload is moved imaréceive buffer and a ACK message
containing the sequence number of the received messag# isasxk to the transmitter. Realizing
that there is no guarantee that the ACK message will arriceessfully, each incoming message
with a sequence number that matches the sequence numberedsage already in the receive

buffer generates an additional ACK message.

Algorithm 2 Intermodule Message Reception

1: success false

2: setBlockinggockettrue)

3: startinterruptTimer()

4: while interruptTimerNotExpired(lo

5: rxDatagram= read6ocke}

6: if rxBuffer=0then

7 rxBuf fer=rxDatagrampayload

8: rxBufSegNuns rxDatagramsequenceNum
9: success true
10: endif
11: if rxDatagramsequenceNum rxBufSegNunthen
12: write(socketACK)
13: endif
14: end while
15: return success

83

The simulator also supports the ability to induce a givehlufairate in communication links
between neighboring modules in accordance withatxmunication reliabilityparameter. The
user specifies this number as a percentage between 0 and dctAs@mmunication link is formed
between a new process and its neighbors, the chance thatks isgoverned by the communica-
tion reliability. To disable a particular link, the simubtattconnects to the TCP/IP-based control port
of the module with the newly “broken” communication link ainforms the module that it may not
communicate with a particular neighbor. This process idtehin the simulation-specific code

so that the application code can treat the link normally.

4.4 Extensibility

The simulator is designed to be easy to distribute acrossptaumachines. Because each module
is simulated as a stand-alone process that communicatestsviteighbors over a standard IPv4
network, the simulated modules can be located on any matiaeés connected to the network.
If the user wants to simulate a large system, it is easy tadgeeadditional workstations. Our
simulator has the additional advantage that it does notaelany special libraries to function.
Any standard Linux- or UNIX-based OS should be capable ahgas a node in the simulator
network. This ensures that it is easy for non-privilegedsis@ deploy our system.

The computation nodes used by the simulator to execute tlelecode are specified at run-
time using a flat text file. This host file contains lines thaafy a hostname, maximum number
of simulated processes to be run on that host, and a nicknantled host. During initialization,
the simulator reads this file once and caches the informatiba maximum number of processes
allowed to run on a given computation node is used when rahydassigning simulated modules

to nodes.

4.5 Front-end and Simulated Robot Separation

The Sandbox system uses a central GUI running on a singletfazstine to display the topology of

the devices being simulated, the internal state of each tepdnd the messages flowing between

84

modules. This GUI is written using the Qt application franoeky and it uses OpenGL to display
a 3D model of the topology. To receive internal state and ages$duffer information from each
simulated module, the GUI opens a TCP/IP port that all of theuated modules can connect to
and communicate with. Each time the internal state of onéwifilated modules changes, or each
time a module receives a message, the module sends a TCR fueitieeGUI over the underlying
IP network. The GUI parses these messages and displaysdmegnts in an informative manner

as shown in Figure 4-3.

11,29,0 (gb2)
UID:506838570
p alization (1)

1:FALSE (0)
x-1
y:-1
rotation:INVALID (-1)
included:FALSE (0)

NVALID (-1)
otr: IN‘JALID { 1)

55 Is:
h0r|dFdNF|ghh0r~. {} {Du):
probConnected[UP]: 1.00
probConnected[RIGHT]: 1.00
probConnected[DOWN]: 1.00
probConnected[LEFT]: 1.00
parent: {} (0x0)

: %0

n:{})
group: NONE {OJ

parentGroup:INVALID (-1)
grouprng\cud {} (0x0)
y NeighborsToKeep:{} (0x0)
H)

C|F‘LI‘-|t[O] { J
cleList[1]:{} ()
cleListDup:{} ()

IFadFrCtmrd (0,0)
iccom_tx_buf[UP]:#LOC
Uf[RIGHT]:#LOC
uf[DOWN]: #LOC
buf[LEFT]: #LOC
rx_buf_ IocaI[UP]
_buf_local[RIGHT]:
(_buf_local[DOWN]:
r‘ —buf_local[LEFT]:

Figure 4-3: The Sandbox GUI helps the user visualize thelégyoof the robot modules being
simulated, and it displays internal state information freach module as the mouse moves over it.

By separating the GUI from the actual modules being simdlate achieve several benefits.
First, it allows the aforementioned extensibility. If th&Gand all modules were a simulated using

a single program, it would be nearly impossible to extendsihaulator system across multiple

85

machines. Second, we can restart the GUI and the simulateldlesoseparately. This feature
is useful when one wants to modify the code running on the lsitad modules without redoing
the set-up of a particular experiment. One simply recorsylie Pebble code and then, within the
simulator GUI, issuessgestart all command. This restart commands kills all currently running
processes, but keeps track of each process’s physical p@nlocation, rotation, and UID, for
example. Using this information, Sandbox then reruns easbegss to recreate the same physical

arrangement of simulator modules.

4.6 Experiments

To test the performance of the Sandbox system, we have ctedpdenumber of experiments
on a set of six virtualized Linux machines spread across wsittndt physical machines. Each
physical machine was hosting 7 other unrelated virtual nmesh Each of the virtual machines
was given exclusive access to a single 64-bit processommgian 1.86GHz with 1MB of L2 cache.
Additionally, each virtual machine was assigned 2GB of datdid RAM and shared access (along
with the 7 other virtual machines) to a 1Gb/sec Ethernet eotion.

To test the speed of the Sandbox system, we performed exg@smwith the localization al-
gorithm that we use as part of the self-disassembly proocebeiSmart Pebbles system. The goal
of the algorithm is to inform every module in the ensembla®facation relative to a root module
whose position we assign arbitrarily to be (0,0). The sigigliof the algorithm combined with
the fact that it requires a small degree of local computatiod a large amount of inter-module
communication make it a good candidate for characteriziegandbox system.

The algorithm itself is as follows: once a module knows itsipon, it sends a position message
on to its neighbors so that they can determine their posti&ach position message contains the
transmitter’s location and rotation. The receiving modiweowing on what face the position
message was received, can determine its own position aadtation. Modules continue to send
and receive position messages until all modules in thetstre&now their position.

We characterized the running time of the localization atgar in both chains of modules and

square blocks. Figure 4-4 shows the running time for theietgon algorithm when the topology

86

of the Smart Pebbles is a n-unit chain. As the figure showshaeacterized two different ways to
distributed the modules. The default was to run all modukea single workstation. Alternatively,
we randomly assigned modules to one of the six workstatiéigure 4-4 shows that there was
a slight performance benefit when distributing modules smorkstations. This makes sense
given that each computational node needs to do less worknihaunication between nodes were

slower, this benefit might be lost.

Localization Running Time for Chains of Modules
60 T T T T T T T

50

IS
o

Time to Localize [sec]
w
o

—©&— All Modules on 1 Host
q —+&— Modules Randomly Assigned to 6 Hosts

. . . | | | | | |
10 20 30 40 50 60 70 80 90 100 110
Chain Length [number of modules]

Figure 4-4. When executing the localization algorithm omink of modules, the running time
scales linearly with the length of the chain. Additionalle see a benefit in using multiple com-
putation nodes, instead of a single node, when running thelator.

We also characterized the running time of the localizatignr@hm on square topologies. The
results of these experiments are shown in Figure 4-5. Wedftlat a single computational node
became noticeably sluggish when attempting to run more 488modules. This is why we did
not simulate a square with side length greater than 20 usilygaosingle computational node. We
observed this same latency when simulating squares withlsijth greater than 45 while using
all six computational nodes. Interestingly, when runnimg localization algorithm on small, (less
than 400 module), squares of simulated Smart Pebble mgduéesee no difference in running

time as we switch from running all modules on a single nodamalomly distributing the modules

87

across six computational nodes.

Localization Running Time for Squares of Modules
30 T T T T T

251

nN
o
T

Time to Localize [sec]
=
(62}
T

10

—©&— All Modules on 1 Host
—+&— Modules Randomly Assigned to 6 Hosts

. ! ! ! ! !
5 10 15 20 25 30 35 40 45
Square Side Length [number of modules]

Figure 4-5: The time for the localization algorithm to coetel on a square of modules scales
linearly with the side length of the square. Surprisinghg tunning time does not appear to
depend on whether all modules are running on a single cortipod node or distributed across

SiX.

We have also repeatedly run the localization algorithm erpthysical Smart Pebble and Miche
hardware. In hardware, we see a similar linear running tirm@sve conclude that the simulator is
operating correctly. Consult Chapter 6 for many additigniats which compare running times in

hardware and simulation.

88

Chapter 5

Low Level Communication

Nearest-neighbor communication between Robot Pebblesnodes the basis of all the higher-
level algorithms that drive the Robot Pebbles system. Usisgyest-neighbor communication,
the nodes are capable of localizing, routing messages frognaobitrary point to another, and
duplicating passive objects that are surrounded by actvedutes. We have developed a robust

low-level communication system that ensures that messagedelivered reliably and correctly.

There are two major challenges associated with inter-neodoinmunication in the Pebbles
system. First, due to space constraints, we have a mininmaislware approach. There is not
enough area available on the flexible PCBs that form the nesdal more than a few communication-
specific electronic components. Second, the software ressavailable for communication are
severely limited. The processors run at 8MHz, have 32KB ofgmm memory, and have 2KB of
RAM.

As explained in Section 3.5, each node is only capable ofvieceor transmitting on a given
face at any time. As a result, the modules must divide theie tbetween listening for incoming
messages and transmitting outgoing messages on all offtoeis. If a module is attempting to
transmit a message to its neighbor, there is no guarantéétghaeighbor will be listening for
an incoming message on the corresponding face. Furtheriin@eeceiving module may begin
listening for an incoming message on the given face part Wwegugh the transmitter’s attempt.

Alternatively, a module actively transmitting a message meperience interference from its in-

89

tended recipient if that recipient begins to transmit its\punrelated message back to the original
module.

The communication channel is noisy. As seen in Figure 342 nbise margin between high
and low bits is roughly 800mV. If there is misalignment betweneighboring modules, the noise
margin will decrease. In addition, there is significant srtak between modules. Bits from a
neighboring module to which the receiving module is noelshg come within 200mV of the bit
detection threshold.

To handle these challenges we have created a packet-baseaucacation protocol that min-
imizes data corruption while ensuring acceptable comnatimio through-put. Packets are pro-
tected with a sequence number, length field, and checksurch Badule randomly divides its
time between listening for incoming messages on all fouesacA module does not repeat lis-
tening on a given face until it has also listened for incommegssages on all other faces. The
modules are also capable of detecting severed commumicetiannels and channels that have
been re-established. Finally, to manage the messages didegimveen neighboring modules, we
have created a set of transmit and receive buffers. We halermed numerous experiments to

demonstrate the results of our approach.

5.1 Message Buffers

The high-level application code interfaces to the low-ld&¥B magnet communication routines
with a set of transmit, receive, and payload buffers. Themnie set of buffers for each face, an
additional set for each module’s SPI-based interface tetternal world, and a final set that is
used internally. These buffers are illustrated in Figutke 5-

To send an application-level message to a neighbor, the imatiecks whether the transmit
buffer is currently empty, and if it is, loads the new messagethe buffer using th€i11TxBuf
function shown as Algorithm 7. Once the transmit bufferslaegled, the high-level application
code must call theransmitMessage function (Algorithm 6) to prompt the low-level communi-
cation interface to attempt to send the queued messages.

Whenever the low-level communication interface is not ssganessages, it is listening for

90

Face 4 Application (1ode Face 2

. : ©

| c

| (@)

: RXBuf. [q2
Parser i

I o

! w

I TX/RX Buf. |¢
!
' ’| Payload Buf.

Figure 5-1: The Robot Pebbles use transmit and receiverbudfean interface between the high-
level application code and the low-level communicatiorifgce. The arrows indicate the direc-
tion in which data flows.

91

incoming messages. When the module successfully receimesvanessage, (which it is only
allowed to do if the face-specific receive buffer is empty)places the new message into the
receive buffer. From there, the high-level applicationeodn access and parse the message.

In Section 5.4 we explain how the system employs routing aggEss as an abstraction layer
that facilitates the delivery of messages to nodes at argitoordinates, not just a node’s nearest
neighbors. Routing messages carry a payload message ¢haceriving module needs to parse
after determining that it is the intended recipient of thetimg message. To facilitate this process,
each face also has a payload message buffer. The payloadofiagrmessage is transferred to
this buffer when the routing message reaches its destimatio

The reason the payload of a routing message is copied to yhegokbuffer for parsing is that
some routing messages are margedlic. This means that as they propagate to their destination,
every module through which they pass parses the routingagesspayload. The payload buffer
provides a location from which to parse a public payload authoverwriting the message in the
receive buffer. If instead we wrote a routing message’sqay/back to the receive buffer, over
the routing message itself, we would effectively halt thetimg message’s journey to its specified

destination. Algorithm 3 demonstrates this process.

Algorithm 3 routeParsekFace msg—high-level parsing function for received routing (ROT)
messages showing when a ROT message’s payload is movedexéinang face’s payload buffer

Require: 1 <rxFace<4

Require: msg message in receive buffer being parsed
1: if msgdestination= getThisLocation(}hen

2. if isPayloadBufEmptykFace) then

3: moveToPayloadBufkFace msgpayload
4: emptyRxBuf(xFace);

5. endif
6.

7

8

return
. else ifmsgpublic= true then
if isPayloadBufEmptykFace) then

9: moveToPayloadBufkFace msgpayload
10: else

11: return

12: endif

13: end if

14: forwardROTinsg

15: return

In addition to the buffers associated with each face of a negdbhere is an internal set of

buffers. The internal buffers are used when a module wishasttate a routing message. So that

92

the high-level application does not need to decide on wlacle to start propagating the routing
message, it can write the routing message to the modul@migttransmit/receive buffer. The
first time the message is parsed, the routing message havillllerove the routing message to the
correct transmit buffer so that it departs the module in treect direction.

Finally, there is a set of buffers dedicated to communicetvth the external world using the
module’s serial peripheral interface (SPI). This integfé& connected to a set of contacts on the
bottom face of each module. (See Section 3.7.) These centdetface with a set of pogo pins in
a test fixture. In most usage scenarios, only a single modwe ensemble is connected to the test

fixture, so the SPI transmit and receive buffers are typiaaiused.

5.2 Packet Format

Inter-node communication is governed by the simple two-peotocol based onyls pulses in-
ductively coupled between the EP magnet coils of neighlgarindules. (See Figure 3-12 for the
waveforms.) To send space(low-level), nothing is sent during the bit period. As a rgsthe
output of the processor’s internal analog comparator (fgpe €& 3-8) remains low. To sendnaark
(high-level) bit, a Jus pulse is sent during the bit period which pulls the invertimput of the
comparator low for a short period. As a result, the compasatatput goes high momentarily.

Bits are sent using on-off keying at 9600bps. We chose 960bbpause it is a standard baud
rate, and it allows the 8MHz processor enough time betweisntdiperform other tasks. While
the ATMega328 inside of each module does have a hardware JARTact that the mark pulses
only occupy lus of the entire 10g4s bit period, prevents us from using it. Instead, all UART
functionality is implemented in software using interrupts

Figure 5-2 illustrates the structure of each byte. In paldic each 8-bit data byte is preceded
by a start bit (always a mark) and followed by a parity bit (knar space) and two stop bits (always
space bits). Each byte is sent least significant bit (LSB) fikB inter-node data is constrained to be
ASCII strings with character values ranging from 0—127.sTlieaves one bit of each byte unused
for data. The unused bit, when a mark, signifies that the Isygedynchronization byte. For all

other bytes, the bit is a space. Because we want the receilerable to identify a synchronization

93

104.2us lus

O O O

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8 bit 9 bit 10 bit 11
start data[0] data[1] data[2] data[3] data[4] data[5] data[6] data[7] parity stop stop

Figure 5-2: Each byte exchanged by neighboring Pebblesbegih a start bit that is a “1” thereby
driving current through EP magnet coils. The start bit isofoked by eight data bits, a parity bit,
and two stop bits.

byte as early in its reception as possible, we left-shiftsdtneen ASCII character data bits and use
the LSB as the synchronization identifier.

The exchange process is a bidirectional protocol. We teenmtbdule sending the application-
level message to its neighbor tiiasterand the module receiving the application-level message the
slave The slave still transmits some bytes back to the mastemifroothat it is listening and that
it has received the message successfully. This exchanthasisated in Figure 5-3. Algorithm 4

illustrates the transmitter’s algorithm and Algorithm ® tleceiver’s.

Master 3 Slave

£ Sync: !
=11111111 —

e

«—

Buffer Full:
01010101

Packet Length: !
XXXXXXXO ————

Application Ms :3
KRS —gj—>

Figure 5-3: The master module transmits an applicatioetlevessage to its neighbor using a
bidirectional exchange that attempts to ensure robust aomoation in spite of a noisy, unreliable
communication channel.

The master initiates the data exchange process in Line 6gufrdhm 4 by sending a synchro-

94

Algorithm 4 epMagTransmitkFace msg—called to transmit an inter-module message to a par-
ticular neighbor

Require: 1 <txFace<4
Require: msg message to be sent

1: if txBuf]txFacé. full = false then

2 return NULL-STRING

3: end if

4: txPacketLengthk- stringLength(xBu fltxFacé.msg+ 3
5: txChecksum- computeCRGkSegNuntxPacketLengthxBu fltxFacd.msg
6

7
8
9

{Send the synchronization byte and wait for the slave to egho i
. transmitByte(@FF)
: byteCnt«+— 1
. startNextByteTimer()
. while isNextByteTimerExpired(3- false do
10: rxByte« receiveByte()
11: if rxByte=0then

12: continue

13: else ifrxByte= OxFF then

14: transmitBytetkBu fltxFacd.seqNum
15: byteCnt« byteCnt+ 1

16: break

17: else ifrxByte= 0x55then

18: return RECEIVER-FULL

19: else

20: return INCORRECT-RESPONSE
21: endif

22: end while

23: if isNexByteTimerExpired(}- true then
24: return NO-RESPONSE
25: end if
{Send the body of the pacRet
26: while byteCnt< txPacketLengtko
27: if byteCnt=2then

28: transmitBytekPacketLength

29: else if3 < byteCnt< txPacketLengtkhen
30: transmitBytetkBu fltxFacé.msdbyteCnf)
31: else ifbyteCnt= txPacketLengtkhen

32: transmitBytekChecksum

33: endif

34: byteCnt+ byteCnt 1

35: end while

{Wait for the slave to acknowledge that the checksum matghes
36: startNextByteTimer()
37: while isNextByteTimerExpired(3- false do
38: rxByte« receiveByte()
39: if rxByte=0then

40: continue

41: else ifrxByte= OxF7 then

42: txBuf[txFacé. full « false

43: return SUCCESS

44. else

45: return CHECKSUM-MISMATCH
46: endif

47: end while

48: return CHECKSUM-TIMEOUT

95

Algorithm 5 epMagReceivekFace—called to receive an inter-module message from a paaticul
neighbor

Require: 1 <rxFace<4
1: startListenTimer()
2: while isListenTimerExpired(}- false do
rxByte« receiveByte()
if rxByte= 0 then
continue
else ifrxByte= OxFF then
if rxBuf[rxFacd. full = false then
transmitByte(8FF)
break
else
transmitByte(R55)
return
end if
end if
: end while
: byteCnt+— 0
. startNextByteTimer()
: while isNextByteTimerExpired(3- false do
: rxByte« receiveByte()
if rxByte= 0then
continue
end if
byteCnt«+ byteCnt+ 1
if byteCnt= 1then
rxSegNum— rxByte
else ifbyteCnt= 2 then
rxPacketLengtkh— rxByte
else if3 < byteCnt< rxPacketLengtlhen
rxBu f[rxFacd.msgbyteCnf < rxByte
else ifbyteCnt= rxPacketLengtlthen

WRNRNNRNNNNNNNRERRRR R R R R
COXNOURAWNFRFOOXNOURAWNRPOORINRIIRW

31: rxChecksum— rxByte

32: if computeCRQkSeqNumrxPacketLengthrxBu f[rxFacd.msg = rxChecksunthen
33: transmitByte(Q7F)

34: if rxSeqNum# rxBu f[rxFacg.seqNunthen
35: rxBufrxFacq.full « true

36: rxBu f{rxFacg.seqgNum— rxSegNum
37: end if

38: return

39: else

40: transmitByte(R00)

41: return

42: end if

43: endif

44: restartNextByteTimer()

45: end while

46: return

96

nization byte of all ones (marks). When the slave senseghbdiSB is a 1, it starts a timer that
counts the bit period of each of the 7 remaining bits. It theerages the seven bit periods to
determine the rate at which the transmitter is operatingdjtists its receiving and transmitting
frequencies accordingly. This synchronization is neagdsacause each node is clocked by an RC
oscillator whose frequency differs slightly from node tadeo The slave node will continue to use

the sensed frequency until it begins to listen for incomiatadn a different face.

After sending the synchronization byte, the master swgc¢bédistening for a confirmation from
the slave in Lines 8-25 of Algorithm 4. Assuming that the slaveceive buffer is empty, it echos
the synchronization byte back to the master in Line 8 of Allon 5. If instead, the slave’s buffer
is full, it echos 0x55 back to the master so that the mastewknbat the slave is alive, but unable
to accept packets (Line 11 of Algorithm 5). Alternativelyetslave may not be listening for the
master’s transmission. In this case, the master receiviiéngofrom the slave. After a timeout
period, the master decides that the slave is not listenegjades its transmission attempt a failure,

and returns to an idle state (Lines 23-25 of Algorithm 4).

Having received the echoed synchronization byte, the mhsgins to send data to the slave.
The first byte sent is a sequence number (Line 14 of AlgorithnThe sequence number ensures
that the slave does not receive duplicate copies of a singésage. In particular, it guards against
the case in which the master thinks that a transmission lilas fahen, in fact, the slave thinks
that it was successful. This scenario arises when the skrieg the message’s checksum, but
the CRC acknowledgment byte does not reach the master. hh#ster does not see the CRC
acknowledgment from the slave, it will attempt to re-traridhe message. Without the sequence
number, the master would think that the message had only degronce, while the slave would

think that the master had intentionally sent two copies efshme message.

There is a unique sequence number associated with bothathentit and receive buffers of
every face. It is used as shown in Table 5.1. Each time theamasgshes to send a new message
on a specific face, it increments the sequence number assbwidh that face (Events 2 and 10 in
the table). When the slave processes an incoming messagejitares that message’s sequence

number with the sequence number of the last received mess$fatie sequence number of the

97

incoming message matches the sequence number of the lastecmessage (Events 6 and 8),
the slave sends a confirmation back to the transmitter, betrially, it treats the message as a
duplicate and does not move it to its receive buffer. In astirif the incoming sequence number
is different from the sequence number of the last receivessage (Events 3 and 11), the slave
still sends a confirmation, but it also treats the messagenasvaunique message. This approach

ensures that the slave only processes a single instanceegsage with a given sequence number.

Following the sequence number, the master sends a byteimogtéhe length of the packet
(Lines 27-28 of Algorithm 4), including the sequence numlggrgth byte itself, application-level
payload message, and CRC checksum byte. The length bytesdhlie slave to determine whether
the correct number of bytes was received. It also allows lgneeg0 set a time-out so that if the
correct number of bytes is not received within a fixed timeqakrthe slave can assume that there
was an error in the communication process. In the event ehediut, the slave returns to the idle

State.

Following the length byte, the master sends the applicd@eel message payload (Lines 29—
30 of Algorithm 4). The payload is a null-terminated ASCIiisg), but the null terminator is not
sent nor included in the previous length calculation. Thessage payload is what is seen by the
higher-level algorithms that control the system’s shapméiion properties. The format of these

payload messages is described in Section 5.4.

After the master has sent the entirety of the applicatioelimessage payload, it sends a CRC
checksum [52] (Lines 31-32 of Algorithm 4). Because theaysteserves the LSB of every byte
as the synchronization identifier, the checksum is onlyséits long. The CRC polynomial used
to compute the checksum is 0x5B. The CRC is computed overy@kbincluding the sequence

number and length byte, sent, not just the ASCII message.

Upon receiving the CRC byte, (which it recognizes based eratteady transmitted message
length), the slave compares the received byte with its ownpedation of the CRC based on
previous bytes in the packet. If the received CRC matchesléwe’s locally computed CRC, the
slave decides that the message is valid (Lines 32—38 of Allgoi5). In response, the slave sends

a CRC acknowledgment (0xF7) to the master. It also storeseiteived sequence number for

98

Table 5.1: Every time the master loads a new packet into arsstnit buffer, it increments the
associated sequence number. The slave sends a checkswwisdgment back to the master each
time the slave receives a packet, but the slave only movestieé/ed packet into its receive buffer
for high-level parsing when the incoming sequence numbiéerdifrom the sequence number
already attached to its receive buffer.

Event # Event Master Master Slave Slave
Description Tx. Buf.| Seq. Num| Rx. Buf.| Seq. Num
1 Master and slave idle Empty 17 Empty 17
Master loads new packet into
2 transmit buffer Full 18 Empty 17
3 Master transmits, and slave Eull 18 Eull 18

receives, packet
Slave transmits, but master
4 does not receive, checksum Full 18 Full 18

acknowledgment
Slave parses message in it

[72)

> receive buffer Ful 18 Empty 18
6 Master re-tr_ansmlts, and Eull 18 Empty 18
slave receives, packet
Slave transmits, but master
7 does not receive, checksum Full 18 Empty 18
acknowledgment
8 Master re-transmits, and Full 18 Empty 18

slave receives, packet
Slave transmits, and master
9 receives, checksum Empty 18 Empty 18
acknowledgment
Master loads new packet into
transmit buffer
Master transmits, and slave
receives, packet
Slave transmits, and master
12 receives, checksum Empty 19 Full 19
acknowledgment
Slave parses message in it
receive buffer

10 Full 19 Empty 18

11 Full 19 Full 19

13 ® Empty 19 Empty 19

99

comparison to future messages. If the received sequenckeruwmas different than the previously
stored number, it moves the received message to a facefispeceive buffer and sets the buffer
full flag. At this point, the module’s application-level aigthms may parse the message.

If the received and computed CRC bytes do not match, the skwves a not acknowledgment
(Ox00) to the master instead (Line 40 of Algorithm 5). Theveldoes not update its sequence
number or move the message to the face-specific receiverbiifie application-level algorithms
never know about the failure.

Meanwhile, when the master receives a CRC acknowledgnumnttfie slave, it knows that the
message has been successfully transmitted (Lines 41-4igofithm 4). As a result, it marks the
face-specific buffer from which the message was transmatsezinpty so that another message can
be loaded by the application code for transmission. If thetaraeceives a CRC not acknowledge
byte, or nothing at all after transmitting its CRC checksutrassumes the transmission has failed
and leaves the transmit buffer unmodified (Lines 45 and 48lgb¥khm 4).

5.3 Packet-Level Experiments

To ensure that packet-level communication algorithms veorkectly, we logged the exchange of
over 30,000 inter-module messages. We aimed to determinajbickly and reliably a group of
modules is able to communicate. In each case, we ran a sériearaelated experiments. In
each experiment, one, two, three, or four transmitting nexlwere mated to a central receiving
module. Each transmitting module attempted to send a stfingessages consisting of increasing
numbers: “1”, “2”, “3”, etc. The transmitting modules werdeanpting send these messages on
all of their faces (i.e. “3” was transmitted from all faceddre transmitting “4”). If the receiving
module did not respond to a transmitting module’s attemgtaonsmit, the transmitting module
progressed to the next number. The receiving module wasectedhto a power source and also
shared a serial communication link with a desktop PC runaitgrminal program. The receiving
module’s only task was to listen for incoming messages oh e&ds four faces and relay these
messages to the desktop computer. Table 5.2 summarizessthlesrof our communication speed

test. In each case, we measured how many messages wereddoeive first 60 seconds after all

100

modules were energized.

Table 5.2: The inter-module message exchange rate is npligbbrly related to the number of
neighboring modules transmitting messages.
| # Transmitters Rate[msg/seL| Rate per Facgmsg/seL |

1 104 10.4
2 20.5 10.3
3 39.3 131
4 50.9 12.7

The communication speed test shows that the message mteqi is, in the worst case, 10
messages per second, but grows in proportion to the numibemsimitters. This is not surprising
given that the receiver listens for incoming messages o fz@e for a set amount of time before
proceeding to listen on the next face. In the event that tbeiver does receive a message while
listening to a specific face, itimmediately advances tefisig on the next face. In the experiments
summarized in Table 5.2, the receiver was programmed tediagd listen on each face for 25ms,
but the messages being transmitted were roughly half thggte (Given our experience with the
Miche system [34], we expect the average message emplogelddllisassembly algorithms to be
15 characters in length and therefore require 12.5ms tertrdr) If the receiver receives a message
each time it listens to each face, it will be able to progréssugh its tour of all four faces more
quickly. This explains why the per-face message recepttsnwas greatest when the receiver had
three of four neighbors.

To test how reliably neighboring modules were able to cominaia, we performed two ex-
periments. The first was designed to test the reliabilitthefdcommunication channel; the receiver
listened for incoming messages on only one face. We alloWwedingle transmitter to send over
10,000 messages. Not a single message was lost or rececadeictly. We conclude that the
inter-module communication channel is quite robust wherodute is only communicating with
a single neighbor. In the second experiment, the receivedelti its time by listening for incom-
ing messages on all four faces. We measured both the frauftimessages received as well as the
number of attempts each transmitting module made beforagtsuccessful. Table 5.3 shows what

percentage of transmitted messages were received andigaske PC.

101

Table 5.3: The percentage of messages received by a modhlewitiple transmitting neighbors
increases with the number of neighbors.
| # Transmitters % Messages Received

1 25.0
2 25.0
3 26.4
4 30.2

The results for the second experiment show that percenfagessages received never exceeds
30%. This is due to the fact that the receiving module is ostghing for incoming messages on
any given face 25% of the time. For every time slot during \utifee transmitter and receiver syn-
chronize and exchange a message, there are three othatspehen the transmitter fails to send
its message because the receiver is not listening. Thenrdasrecords each of these failures and
does not attempt to re-transmit any message. (This appreacity used when characterizing the
communication algorithms.) When running application cdtle transmitter will make multiple
attempt to re-transmit any message that is not sent suodgssi the first attempt. This is detailed
below.

Also note that as the number transmitters is increased, éheeptage of messages that are
received increases. This trend is due to the fact that theavecis able to cycle through listening
for incoming messages on all faces more quickly when it igallyt receiving messages. Once it
receives a message on a given face, the receiver immedmatelgs to listening for an incoming
message on the next face. If the time to exchange a messduetisrshan the duration the receiver
normally lingers listening on each face, the receiver wdldble to cycle through its faces more
quickly when it receives a message on each face.

Finally, we tabulated the number of unsuccessful transarisgttempt made by each of the
transmitting modules before a successful transmission.aMd&/ each transmitter to send mes-
sages for 60 seconds. During this 60 seconds, each traesatiitmpted to send between 8,000
and 12,000 messages. The results are displayed in Figukelbeth shows, once again, that four
neighboring transmitting modules leads to fewer droppedgsages than just one or two transmit-

ting modules. Regardless of the number of transmittinghtmgs, the percentage of the time a

102

transmitter unsuccessfully attempted to communicate thigtreceiver before success was rarely
more than three attempts. If the transmitters were progrednta retry sending each message
until successful, a transmitter would, on average, suceathdn 4 attempts 9%% of the time.

By the time a transmitter has made 7 attempts, it is virtugligranteed to have sent its message

successfully.

=

Il One Neighbor
[Two Neighbors
[|Three Neighbors| -
Il Four Neighbors

o
©

o
fos)

Percentage
o o o
(%] (2] ~

o
N

©
w

o
[N

0.1r

P | B ' N

0 1 2 3 4 5 6 7
Number of Dropped Messages Per Successful Message

Figure 5-4: This plot shows the number of unsuccessful gitera transmitter typically makes
before it successfully sends a message. Regardless of theenwf transmitting neighbors a
receiver is communicating with, 98.5% of messages are sgwbssfully within four attempts.

5.4 Application Message Format

The application-level message payload contained in eackepfollows a simple format. In par-
ticular, messages are composed of printable ASCII chasafitem 0—127. By choosing to use
text-based messages, we greatly simplify the debuggincepso It is easy to quickly interpret a
list of messages exchanged between modules, and it is possidDNstruct messages that the user
wants to inject into the system through a particular moduitee downside to ASCIl messages is
that they consume unnecessary space. An integer that wolyldemjuire one byte to represent in

binary, may require up to three ASCII bytes. The other disathge to ASCIl messages is their

103

variable length. That same one-byte integer may only needghesASCII byte to represent it.
We cannot simply assume that a given byte position within & message always holds the
same field. As a result, using ASCIl messages dictates thaewe some method to differentiate
between neighboring data fields within a message.

Each message begins with a type field. The type field can beesigyh and contain almost
any printable character. In our code, most messages ussal ahfour character type fields. We
chose the character combinations to reflect the purposeeahttssage. For example, we picked
“LOC” for a localization message and “DIS” for a disassentnlgssage. When a module receives
a messages from its neighbor, the first thing it does it comfia message’s type field against a
list of known message types. When it finds a match, it sends#ssage to the parsing function
that is specific to that particular type of message.

To signify the end of the type field, we use a field separator. hafgee chosen a comma as
the universal field separator. After this first comma, is th&t fiata field. Messages can have an
arbitrary number of data fields, or none at all. All data fiehtis also separated by commas. The
number and contents of the data fields are message specifiex&mple, a localization (LOC)
message has no data fields. It is sent by a module wishing &izedtself. The receiver, if it
can help the sender localize, responds with a position (P@S¥yage that contains its coordinates,

rotation, and transmitting face. A sample position message

POS,1,0,0,3

The one exception to using the comma as a field separatos anderouting messages to arbi-
trary destinations. Routing messages transport anothgsage to a given destination coordinate
that is not necessarily the sender’'s immediate neighbare¥Xample, a routing message could be
used to send a disassembly (DIS) message from coordiddtgeto (4,4). The message embedded
in and being transported by a routing message compriseaghiidld of the routing message. That
is, it is appended to the end of the routing message. To diffeate the embedded message being
routed from the routing message itself, we use a semicolbis. i the only instance where semi-

colons appear with messages, so it easy to separate a rougggage’s payload from the routing

104

information that the message carries instructing it howetch the destination. A sample routing

message:

ROT,2,1,4,4,0,-1,0,0,0,-1,-1;INC,0,0,1,1

As a convenience, we terminate all messages with a new liaacter, (ASCII code 10). The
Pebble modules ignore the new line character, but the nexcharacters ensure that each message
appears on its own line when viewing a list of messages inrelata text editor.

There are many different types of messages used by the Rebbtd? system. We list them
here alphabetically with short explanations. Table 5ustilates the format of each message type

in more detail.

Bounding Box (BBOX) describes a rectangular bounding box by its minimum and mauxi
coordinates. Used to describe the approximate shape atfitied configuration of modules

or the obstacle being duplicated.
Border (BOR) used to notify modules on the border of the duplicate shapleeaf special status.

Child (CLD) defines a parent/child relationship between neighbor nesdsib that each under-

stands which is dependent on the other for power.
Disassemble (DIS)instructs the module to start the self-disassembly process

Duplication (DUP) instructs modules on the border of the original passivesbhamg duplicated
to send border (BOR) messages to their conjugate borderlesthat will form the border

of the duplicate shape.

Fill (FIL) notifies all modules inside the duplicate border that theypart of the duplicate object

and should not self-disassemble along with all other madule

Group (GRP) used by neighboring modules to determine whether they at®fihe same shape
being formed or different shapes. If part of the same shdpentodules maintain their

mechanical bond during disassembly. Otherwise, they bteak

105

Inclusion (INC) notifies a module that it is included in the structure beingnied and that it

should not self-disassemble. Not used during the duptingirocess.

Localization (LOC) request that a neighboring module send it position infoloneto the local-

ization message’s sender because the module needs taéotsdilf.

Position (POS) specifies the position and rotation of the sender. Sent porese to a localization

messagde.

Ready (RDY) indicates that a module is ready to process incoming routiegsages. Until a
module has received a ready message from a neighbor, itetiforward routing messages

to that neighbor.

Reflection (REF) sent by modules to inform an external graphical user interéd their existence.

Helpful to the user when debugging the system.

Routing (ROT) routes an embedded payload message to a specific destimatiagiven plane.

ROT messages only support two-dimensional routing.

Sense (SEN)used to sense the shape of the obstacle that will be dugicEt@lways sent as the

payload of a routing message.

Undeliverable (UND) sent back to the sender of the routing message when routisgage can-

not reach its specified destination. Sent as the payloadmftang message.

There are two additional messages types that are used fohrgyous latching and unlatch-
ing of neighboring modules. To request that its neighborckyonously latch with it, a module
sends an ASCII ACK character (code 6) to its neighbor. Siiyila module sends a ASCIl NAK
character (code 21) if it wishes to synchronously unbondhfits neighbor. Once the two mod-
ules successfully exchange the message, they simultdgemesgize the their electropermanent
magnets to either latch or unlatch. Synchronously latclpirmgluces stronger bonds than if each
module independently activated its EP magnet (see Sec#ddnl3kewise, synchronously unlatch-

ing produces bonds with undetectable remnant force.

106

Table 5.4: Each inter-module message follows a predefinaadithat begins with a message type
identifier and is followed by some number of data fields sepdray commas.

| Message Typg Format |
Bounding Box [BBOX,<min x>,<min y>,<max x>,<max y>
Border BOR,<leader x>,<leader y>;<border dir 1>,...,<border dir n>
Child CLD,<sibling/child/parent>
Disassemble | DIS,<all/structure>
Duplication | DUP,<leader x>,<leader y>,<offset x>,<offset y>
FIL,<tangible src x>,<tangible src y>,<virtual src x>,<vitual src y>,
Fill <dest x>,<dest y>,<src UID>,<inside>,<leader x>,<leader y>,
<offset dist x>,<offset dist y>
Group GRP,<group number>
Inclusion INC,<hop count>,<branch dir.>,<ignore>,<group number>
Localization | LOC
Position PO$,<tx fgce>3<position x>,<position y>,<rotation>,
<min duplication area>
Ready RDY,<notify/query>
Reflection REF,<po§ition x>,<position y>,<rotation>,<parent>,<neighbor 1 present>,
...,<neighbor 4 present>
ROT,<src x>,<src y>,<dest x>,<dest y>,<public>,<ideal dir>,
Routing <closest approach>,<departure x>,<departure y>,
<departure dir>,<departure dir old>;<payload>
Sense SEN,<src x>,<srcC y?,<dest x>,<dest y>,<src UID>,<perimeter>,<area>,
<min x>,<max x>,<min y>,<max x>
Undeliverable| UND,<original dest x>,<original dest y>

5.5 Monitoring Link State

A module is only physically capable of transmitting or re@eg messages on a single face at any
give time. As a result, when module attempts to transmit asags to its neighbor, there is no
guarantee that it will be successful on its first attempt. éikely, it will require several attempts
before the transmission is successful. When a module tagemnd a message to its neighbor, the
module should not necessarily assume that the communidatiois broken or that the neighbor

is absent.

Still, for several reasons, a module does need a way to detemhen a neighbor is unreach-
able. First, many high-level algorithms contain loops andtatements that depend on a message
being sent to the module’s neighbor. If the module never dbas its attempt to send a message
to an unreachable neighbor, the algorithm will be stuck imnénite loop. Second, if a module is
parsing a routing message, we want it to find an alternate touhe message’s destination instead

of continuing its futile dedication to the forwarding the $sage along a static path. For both these

107

reasons, it is important that a module eventually identifykbn communication links.

There are several reasons why communication links breast, i module may be removed
from the system, either by the the user, or by the executi@nsbiape formation control sequence.
Second, a module may shift in the block so that it is no longecantact with one or more of
its neighbors. Because all of the modules are slightly difie sizes, they do not pack perfectly
into a grid. It is not completely uncommon for a module to hg neighbors, but only be able
to communicate with three of them. Exactly which of its ndigis a module can communicate
with can change as the topology of the system evolves. As sooakelles detach from the system,
they relieve internal stresses resulting in slight meatamealignments and consequently other
communication links being formed or broken. Finally, a conmigation link can break if a module
enters a fault state. The modules can experience both hexcmd software faults that result in
them entering a non-responsive state until power is remdgetiveen these three causes, it is not
uncommon for several communication links between neighlgomodules to change while the

system is running.

Algorithm 6 shows how the link state monitoring process afes. To identify broken com-
munication links, each module tracks how many unsuccea#ieinpts it has made to transmit a
message to each neighboring module. Once the module stidbessnds a message to one of its
neighbors, (or the neighbor at least indicates that itsvedruffer is full), the transmitting module
resets its failed transmissions count (Lines 8—12 of Alponi6). If the count is not reset and passes
a hard coded threshold, (Lines 19-21 of Algorithm 6), the al@dnarks the given face/neighbor
as non-responsive. Once a face is marked non-responsevvidevel communication routines
report failure after a single attempt when asked by the aafiin code to transmit a message. As

a result, the application code can follow a contingency piatead of waiting indefinitely.

Once a face is marked non-responsive, the module attemgsetstablish the link to its neigh-
bor. Whenever the low-level communication code is not gtémy to send an application-level
message to a neighbor, it attempts to send a ping (PNG) ness#we neighbor (Line 4 of Algo-
rithm 6). As soon as the module successfully sends a pingageds its neighbor, it marks the

communication link active. When the neighbor receives g piessage, it simply discards it after

108

Algorithm 6 transmitMessage{Faceg—manages message re-transmission and link state moni-
toring

Require: 1 <txFace<4

1: if txBufltxFacé. full = true then
2: txStatus— epMagTransmitkFace txBu fltxFace)
3: else iftxFace¢ unbondedNeighbothen
4 txStatus— epMagTransmitkFace “PNG”)
5: else
6.
7
8
9

. txStatus— epMagTransmitkFace UNLATCH)
:end if
. if txStatus= SENTthen
:unsuccessfulTransmissidnd-acé < 0
10: communicatingNeighbors- communicatingNeighbots{txFace
11: txBufftxFacg.full «+ false
12: valuefxBufltxFacg.statusPt) «+ SUCCESS
13: else if (txStatus= CHECKSUM-MISMATCH,) or
txStatus= CHECKSUM-TIMEOUT) or
txStatus= RECEIVER-FULL) then
14: unsuccessfulTransmissidnd-acé < 0
15: value{xBufltxFacd.statusPtj <+ AGAIN
16: else
17: txBufftxFacd.remainingAttempts- txBu fltxFace.remainingAttempts- 1
18: unsuccessfulTransmissidnd-ace < unsuccess fulTransmissioxFace + 1
19: if unsuccessfulTransmissidnd-acd > THRESHOLLthen

20: txBu fltxFacd.remainingAttempts- 0

21: communicatingNeighbors- communicatingNeighbots{txFace
22: endif

23: if txBuf]txFacd.remainingAttempts: 0 then

24: txBufltxFacg. full + false

25: valuefxBu fitxFacg.statusPt) «+ FAILURE

26: else

27: value{xBu fltxFacd.statusPt) «+— AGAIN

28: endif

29: end if

109

sending the CRC acknowledgment byte. The ping messageseng to test whether the link is
active; they carry no information.

There is one exception to when ping messages are sent. Eatthekeeps a list of neighbors
from which it has explicitly unbonded. Typically, this listpopulated during the self-disassembly
phase of shape formation. Once a neighbor has been addeis tsththe module sends syn-
chronous unlatch messages instead of ping messages (Lihél§arithm 6). This serves as

insurance that helps guarantee that the magnetic bond &xetve modules is actually broken.

5.6 Robustness: Responding to Broken Links

By detecting and attempting to gracefully handle brokenmaomication links, we complicate the
parsing of many messages. Often a message received froghdoeprompts a module to transmit
one or more more messages in response. For example, wherudemeckives a routing message,
(unless it is the message’s specified destination), the haaueeds to forward the message to
one of its neighbors. More generally, once a module parsescaming message from one of
its receive buffers and determines what outgoing messageseds to transmit in response, the
module proceeds to load the outgoing messages into the@paastransmit buffers. If we could
guarantee that these outgoing messages would be suctessiusmitted, the module could then
purge the incoming message that it just finished parsinghbyeireeing the receive buffer.
Because we cannot guarantee that an outgoing message latmladransmit buffer will ac-
tually be delivered, we must wait to purge the incoming mgsdeom the receive buffer. If we
purge the incoming message too soon, the module may logeiafimn crucial to reprocessing the
incoming message when the module fails to transmit the angguessage on first attempted face.
For example, as routing messages are forwarded througtethrk of modules, the data fields
in each message are constantly updated. If a module faigwafd a routing message along the
ideal path as the result of a communication failure, but hesady purged the incoming routing
message, it will be impossible for the module to recoverradl information necessary to reroute
the message. Therefore, we must not purge incoming mesgagesheir receive buffers until

we have verified that any messages generated in respongeitmtming message have been sent

110

successfully.
To explain the details of this verification process, we nedalibe the high-level loop driving

each module. Each module does the following:

1. Attempt to receive messages from neighbors and updatdkereceive buffers (i.e. call

epMagReceive once for each face).

2. Parse the messages in face receive buffers. This typresillts in thef i11TxBuf function

(explained below) to be called.

3. Update internal state variables. This step, along witl tlee parsing function operates,

determines the high-level behavior of each module.

4. Attemptto the send messages in the face transmit buffexgrtneighbors (i.e. catiransmitMessage

once for each face).

5. Repeat

The framework that we use to monitor whether a message hasdueeessfully sent is il-
lustrated by Algorithm 7. In particular, th&i11TxBuf function expects the caller, (typically the
parsing function from step 2 above), to provide a pointer siadus field that may take on one
of three values: SUCCESS, AGAIN, or FAILURE. To move a messago one of the transmit
buffers, the caller must set the value of the status point&GAIN when calling thef 111 TxBuf
function. Then, assuming that the transmit buffer is emipiyelse clause will be exercised, and
thefil1TxBuf function will move the message into the buffer. Note thatfthmetion call does not
change the value of the status pointer, but it does copy timtguatself to a field of the same name
associated with the transmit buffer.

After the call, the parsing function knows that the messagerot yet been transmitted, only
loaded into the transmit buffer. Also note that if the trartdmffer were already full, the caller
would never know the difference. The value of the statusteoiwould still be AGAIN, so the

caller would know to call th&i11TxBuf function again with the same parameters.

111

A simplified parsing function is shown by Algorithm 8. Thisrpang function simply attempts
to transmit any incoming message back to its source, butntomstrates how thé&illTxBuf
function is called and how its results are checked. In paldrg note that the function expects to
be told when the message that it is parsing is new in the sbasé is the first attempt made to
parse it. When a message is new, the function sets the pertstatusvariable to AGAIN so that

the call tofi11TxBuf will copy the message to the buffer (assuming that it is empty

Algorithm 7 fillTxBuf(txFace overwrite msgrepeat statusPtj—moves a message into a partic-

ular face’s transmit buffer
Require: msg message that the caller wishes to transmit
Require: overwritec {true,false}: whether to overwrite the contents of the buffer
Require: repeat> 0: number of times to attempt to send the message
Require: valuegtatusPt) € {SUCCESS, AGAIN, FAILURE: pointer to transmission status variable
Require: 1 <txFace<4
1: if msg= txBuf[txFacd.msgand valuegtatusPtj € {SUCCESS, FAILURE then
2 return
3: else iftxbufltxFacg. full = true and overwrite= false then
4: return
5: else
6:
7
8
9

txBu fltxFacd.seqNum— txBu fitxFacd.seqNumt 1
txBuf{txFacg.msg+ msg

txBufltxFace. full « true

: txBuf|txFace.remainingAttempts- repeat

10: txBuf|txFacq.statusPtr— statusPtr

11: value§tatusPt) < AGAIN

12: end if

Algorithm 8 parseMsgxFace msgnew—example message parsing function that demonstrates
the proper use of thei11TxBuf function by echoing a received message back to the neighabr t

sent it

Require: 1 <rxFace<4

Require: msg message to be parsed

Require: newe {true,false}: whether this is the first attempt at parsing this particalassage
Require: statuse {SUCCESS, AGAIN, FAILURE: local, persistent status variable

1: if new= true then

2 status— AGAIN

3: end if
4: fillTxBuf(rxFace false msg o, addresstatug)

5: if status= SUCCESShen
6.
7
8
9

. purgeRxBuf{xFace
. else ifstatus= FAILURE then
. purgeRxBufixFace
: end if

Because th€il1TxBuf function does not update the value of the status pointergsatimer
function must so that the parsing function eventually lsavhether the transmission was success-

ful. It is the transmitMessage function shown in Algorithm 6 called during step 4 of the high

112

level loop that performs this update. When thensmitMessage function successfully sends the
message, it updates the value of the buffer’s status pontteh, (due to line 10 of Algorithm 7),
points to the same status field that the parsing functionigeovas an argument to tlie€11TxBuf

function.

To illustrate how this approach works, consider this sdenairiterations through the 5-step
high-level control loop. Assume that the first call tpansmitMessage after the initial call to
fi11TxBuf is unsuccessful. Consequently, the value of the statuggyomill still be AGAIN
(Line 27 of Algorithm 6). The second time the parsing funetalls fi11TxBuf, the elseif
clause on Line 3 will be exercised because the transmitibalifeady contains the message that the
calling parsing function wishes to transmit. Now, after seeond call tafi11TxBuf, assume that
the second call teransmitMessage is successful. As a result, theansmitMessage function

will update the value of the status pointer to SUCCESS (LaeflAlgorithm 6).

At this point, the parsing function will be called a third #mbut because theewparameter
is now false, it will not modify the value of the status poinfeine 2 of Algorithm 8). Even
though the value of the status pointer is already SUCCESS W parsing function is called,
the function does not check for this condition until aftenats again calledil1TxBuf (Lines 4-5
of Algorithm 8). This is acceptable because the third timeehrsing function call$i11TxBuf,
the fi11TxBuf function will exercise the f clause on Line 1 of Algorithm 7 because the passed
message will match the message already in the face transiffér,band the value of the status
pointer will be SUCCESS. TheillTxBuf function will not take any action, but when it returns,
the parsing function will proceed to check the status postalue. In doing so, it will learn that
the message has been sent successfully. As a result, thegdarsction purges the message it had
been processing from the receive buffer (Lines 5-6 of Alyoni8). In this example, the parsing
function also purges the message from the receive buffércénnot be transmitted back to the

neighbor from which it was received, but the parsing funttiould do something else instead.

The important fact to note is that even though the messagelheatly been transmitted before
the third call tofi11TxBuf, that call did not reset the transmit buffef's11 flag to true. If it had,

the module would have attempted to send the same message tiilse parsing function really

113

does want to send the same message twice, it must first wdithenvalue of the status pointer is
SUCCESS. Then it must set the value back to AGAIN and callftha TxBuf function a second

time.

5.7 Link State Experiments

To verify that the modules correctly identify and respondbtoken communication links, we
performed 102 experiments in which we modified the topolofya metwork consisting of 16
modules. In all trials, we used the system to route a messatgeebn points A to B in the loop of
modules shown in Figure 5-5. While the routing algorithml \vé explained later, it suffices to say
that by default, the messages always follow the shorterefwlo paths taking four hops to reach

their destination.

Ad—| C B

Figure 5-5: We routed messages from module A to B with andauittmodule C present. The
arrows show the two possible paths taken by the messages.

In 25 trials, the average time for a message to traverse framB\was 5.13s with a standard
deviation of 2.33s. To test the system’s ability to rerouteuad a broken communication link
we removed the module labeled C from the network in order toefdhe message to traverse
the longer, 14-hop route to its destination. In 25 trialsimiyiwwhich module C is removed just
before the message departs from module A, the average gelivee is 22.06s with a standard

deviation of 2.13s. In all 25 of these trials, the messagehea its destination by taking the only

114

available, longer route. After each of these 25 trials, va® allowed the system to stabilize so
that it knew, before a second routing message was ever bahtnbdule C was missing. In these
trials, the average delivery time was 11.66s in 25 trialg, thve standard deviation was 2.19s. So,
by subtracting the average delivery time when the systemmalidknow that module C is missing
from the average delivery time when the system did know thatute C was missing, we find that

the system requires, on average, 10.40s to detect the bcokemunication link.

Finally, we re-inserted module C, and after it was localiaed ready to process routing mes-
sage, measured the time for a message to travel from pointBA tioanodule C’s neighbors were
slow to detect that it had been reintroduced, we would exihedtthe messages would take the
longer route. This was not the case. In 25 trials, the averagng time was 4.60s and the stan-
dard deviation was 2.07s. From this, it is apparent thatyistes realizes that the shorter path is
again available and begins using it with minimal delay. Téwuits of all trials are summarized in
Table 5.5.

Table 5.5: The low-level communication algorithms are tégaf detecting and routing messages
around dynamically broken links. Additionally, when thdsis are restored, the system again
uses them to deliver messages along the shortest path.

| Experimental Setup | # Trials | # SuccessesAvg. Time [s]| Std. Dev. [s]]
A — B, C Present 26 25 513 2.33
A — B, C Recently Removed 26 25 22.06 2.13
A — B, C Removed, System Stabilized 26 25 11.66 2.19
A — B, C Re-inserted 26 25 4.60 2.07

In the 102 experiments summarized in Table 5.5, we saw 2 gds&r® a routing message was
not delivered. Any single module-to-module message exghanror would have been enough to
cause either of these failures. Given that the 102 expetsmresponded to 918 message hops,
the single hop failure rate is less than 0.22%. We would likede a 0.0% failure rate, but the

routing algorithms will require additional refinements tiheeve this.

115

5.8 Two-Dimensional Routing

This section explores how we can transfer messages betwednles that are not immediate
neighbors. We have developed a routing algorithm that allawnodule to specify an arbitrary
destination for any message. The modules in the system tismesthat this message is delivered
or automatically determine that the destination is unrabtsh The ability to route message to any
module in an ensemble is essential to the shape duplicdgonthms presented in later chapters.
There are many possible strategies that we could employrimouting algorithm. We need
to ensure that whatever algorithm we choose is capable aflingnnon-convex topologies and
missing communication links. Consequently, a simple gmaiddescent routing algorithm is not
sufficient. The limited processing power and storage avklto each module further constrain
our choice of routing algorithms, For instance, it is not bk, especially as the number of
modules in the system grows, to maintain routing tableselds we choose to use the traditional
bug algorithm [66] to route messages through the systemeddsof the bug being a robot, the
message is the bug, and the modules are the environmengthwdich the message must navigate

from its source to destination.

5.8.1 Routing Algorithm

In particular, we use the Bug2 algorithm. This algorithmrgyably correct [66] and ensures that,
if it is possible for a message to reach its destination, eénévally will; and if it is not, the sys-
tem will eventually be notified. The Bug2 algorithm is a natuwhoice for our system because
it assumes that the bug has no access to global informatitwe. blig only needs to determine
its position and whether it is in contact with an obstacle,qur case a void not occupied by a
module), facts readily available from the modules thenmeselMhe Bug2 algorithm is also advan-
tageous because the bug only needs to maintain a constanbhtoistate information, and all this
information can easily be stored in the message.

The messages moves from its source to destination by failpaidirect path vector from its
source directly to its destination until it hits an obstadiethen follows the obstacle until it re-

encounters the direct path at which point it leaves the olsstnd continues along the vector to

116

the destination. This repeats until the message reaclassitimiation, or in the process of following
an obstacle, re-encounters the position where it left thectipath vector to follow the obstacle.

Should the message loop back on itself like this, it then lsthat it cannot reach its destination.

5.8.2 Experimental Results

We have characterized the routing algorithm’s speed in 808rtrials. First, we measured how
quickly the system could deliver routing messages. We dsleeha 5-by-5 grid of Pebble modules
and then started the localization process. Once the modvdes localized, we proceeded to
measure the time required to route a message from the roatleati0, 0) to every other module

in the system. Specifically, we routed at least 25 inclusibiCj messages to each of the 24
destinations (we did not route messages to the root modIie) inclusion messages that we sent
alternated between informing their recipients that theyewecluded or not included in the final
structure. When a module received an inclusion messagesitialy that it was included, it turned
its internal LED on. When it received a message indicatiagjitwas notincluded, it turned it LED
off. We used a stopwatch to measure the time between whenessqi the enter key on our PC’s
keyboard, thereby sending the inclusion message, and theentovhen the LED toggled. After
sending 25 including messages to one Pebble, we sent 25 nexhenodule without restarting or
relocalizating the modules. Figure 5-6 illustrates theage time required to route messages from
the root to any other module in the 5-by-5 grid. Figure 5-%&prds the same data but aggregated
to show the message delivery time as a function of Manhattstarcdte between the source and
destination. Both plots show that the delivery times inseeas the message’s destination moves
farther from the source. Figure 5-7, in particular, illasés the linear relationship between the
delivery time and the Manhattan distance separating thees@nd destination.

We performed a total of 622 trials routing inclusion messaigethe modules in the 5-by-5
grid. In the course of those trials, there were only thretaimses where an inclusion message was
not successfully routed to its destination. This a 0.48%ingufailure rate. If we are interested
in thesingle hop failure ratethat is, how often low-level communication between modiigled,

we need to know the total number of inter-module hops takealloyjessages in the experiment.

117

Routing (ROT) Message Delivery Time from (0,0) Routing (ROT) Message Delivery Time from (0,0)
4 - - -

x=0 x=1 x=2 x=3 X=4
Y=4 Y=4 Y=4 Y=4 Y=4
2=3.8008 2=45077 2=5.4919 2=65077 2=7.6846
35
X=0 X=1 x=2 X=3 X=4
8 v=3 v=3 Y=3 Y=3 Y=3
7=3.1504 2=33012 2=5.0704 2=5.7164 2=7.1042
7 . [[[[]
2
— 6 ©
2 £
25 B 251
K 8 X=0 X=1 X=2 X=3 X=4
8 1] y=2 y=2 Y=2 Y=2 Y=2
4 T 2=2125 2=3.0388 2= 4.1965 2=42181 2=5.9416
Pl 5 > m [[n =
gs c
3 2
=
el ©
£ 151
=
1 3 X=0 X=1 X=2 X=3 X=4
a Y=1 ¥=1 ¥=1 Y=1 Y=1
o z=13788 2=2.1796 2= 2.8888 2=3.6404 z=45754
" 1= [[[[]
3 4
) 3 0.5
2 x=1 x=2 x=3 X=4
Y=0 Y=0 ¥=0 Y=0
1 1 z=12424 2=2.1044 2=339 z=4.2128
0 i a) a) . i
Destination Y-Coordinate 0 o o 05 1 15 2 25 3 35 4

Destination X-Coordinate Destination X-Coordinate

Figure 5-6: The time required for the system to route an giolumessage from the root module
at (0,0) to any other module is a linear function of the Manhattanadise that the message must
travel.

Routing Time vs. Manhattan Distance
10 ; ; ; ; ; ;

Mean Time and Standard Deviation [s]

0
0 1 2 3 4 5 6 7 8 9

Manhattan Distance between Source and Destination

Figure 5-7: The time required by the system to route a messagaear function of the Manhattan
distance between the source and destination. This dataoMasted from over 600 trials.

118

Summing the number of hops required to reach each of the 2ihdisns, we determine that the
total number of hops across all trials was 2600. Given thexetlvere still just 3 errors, the single

hop failure rate is 0.12%.

We also characterized the time required for the system terahée that a routing message
was undeliverable. To do so, we assembled and localizedhanbve-by-five grid of modules.
As before, we sent routing messages from the root modul@, @j. Now, instead of sending the
messages to modules that were in the system, we attemptedddleem to non-existent modules
just past the perimeter of the block. In particular, we afitad to route messages to the 13 modules
below and to the right of this block (the row of modulesl, —1) to (5, —1) and the column5,5)
to (5,—1)). We attempted to send 10 messages to each of the 13 desimaWhen the system
discovered that the destinations did not exist, it routediraaeliverable (UND) message back to
the root. We used a stopwatch to measure the time between wbgmessed the enter key on
our PC’s keyboard, thereby sending the routing messagehandoment when the undeliverable

(UND) message returned to the PC (via the root module).

Figure 5-8 shows the time required for the system to detegrfiat a message’s destination is
unreachable, and Table 5.6 summarizes the results. Inaetie system requires more time to
determine that a message’s destination is unreachable thbafestination is further away from
the source. The reason for this is illustrated by Figure Fdts attempt to reach its nonexistent
destination, each routing message first traverses thedantrthe 5-by-5 array before colliding
with, and then following the array’s perimeter. In contrdor destinations that are nearby, the
routing message starts to follow the perimeter almost imately. Both messages completely
circumnavigate the perimeter before returning to thetrahcollision points. Then each propagates
back to the root module. Once again, the message originafitirced for a distant module must

take a longer path to reach the root.

In total, we performed 138 experiments to characterizeithe it took the system to inform
the sender of a routing message that the message was unalgiveln these 138 experiments,
we only saw 1 trial in which the root module was not informedttthe routing message was

undeliverable—a 0.72% failure rate. If one considers thahdrial required that a message travel

119

Non-existent Module Detection Times

o)

30
@ 25
>
< LT
o 20 o)
a
Bis
[}
(8]
& 10
S
5 5
0
5 >
/ 4 °
/ 3
2
1
Destination Y-Coodinate Destination X-Coodinate

Figure 5-8: Using a 5-by-5 block of Pebbles, we measuredriit took for the module at0, 0)
to be informed that a routing message it had sent was undalilee The routing messages were
intentionally sent to the 13 non-existent modules belowtaritie right of the of the 5-by-5 block.

Table 5.6: The system requires additional time to discdwatrrouting message bound for destina-

tions far from their source are undeliverable.
| Destination| # Trials | # SuccessesMean Time [s]| Std. Dev. [s]|

(—1,-1) 10 10 14.9 3.2
(0,—1) 10 10 13.5 2.1
(1,-1) 10 10 145 2.6
(2,-1) 12 12 16.2 2.7
(3,—1) 11 10 17.9 3.4
(4,-1) 10 10 16.6 1.6
(5,—1) 10 10 18.9 4.0

(5,0) 15 15 21.4 4.1
(5,1) 10 10 23.8 3.5
(5,2) 10 10 24.9 2.6
(5,3) 10 10 26.5 2.7
(5,4) 10 10 28.9 3.4
(5,5) 10 10 27.9 4.6

120

O -~ N W H

Figure 5-9: The solid blue trace is a routing message destoréhe non-existent (grey) module at
(5,4). Once the message diverts from the direct path betweenltsesand destination it becomes
a dotted line and circumnavigates the perimeter of the 5-bieck looking for an alternative path
to (5,4). When the routing message returng4o4) it realizes its destination is unreachable, and
it send an undeliverable (UND) message, represented byldleedlashed trace, back to the root.
The red trace represents the path that routing messagaetbftir (0, —1) follows. Immediately,
the trace is dotted as the routing message searches formatilte path tq0,—1). Additionally,
red the undeliverable (UND) message that results need aneltanywhere because it is sent by
the modules a0, 0) to itself. As a result, it takes much less time for the systemetermine that
there is no path tg0, —1) than it takes to determine that there is no pattbid).

121

at least 16 inter-module hops, the single hop failure ralkesis than 0.045%.

122

Chapter 6

Shape Formation Basics

Chapters 3—5 presented the hardware and communicatiotratgbsn which the Smart Pebbles
are built. In this chapter, we introduce the self-assembty self-disassembly algorithms that we
have developed for the Smart Pebbles, and we evaluate thenb@module hardware platform.
Self-disassembling systems require two high-level cdpigist (1) the ability to aggregate the ini-
tial block autonomously and (2) the ability to remove modutem this block to form a particular
shape by subtraction. In this chapter, we present soluf@mmsoth of these challenges. The two
capabilities are inter-related. When the utility of an abjeuilt from Smart Pebbles is exhausted,
the component modules are returned to the collective sysiém self-assembly operation will
create a new block, which, in turn, will be transformed irite hext object by self-disassembly. To
enable the creation of the widest range of objects, it is ngmb that the result of self-assembly

process be a solid block.

By aiming to form a close-packed lattice during the selfeassly phase, we eliminate the
need to transmit a description of the goal shape to every faaduhe structure. Our approach
avoids transmitting the complete shape description toféiil@modules by notifying, with a single
bit carried in an inclusion message, only those modulesdhatpart of the goal shape. Any
module that does not receive an inclusion message assugndsfault, that it is not part of the
goal structure. When the self-disassembly process beiiese unincluded modules break their

mechanical bonds with their neighbors while the modules dih receive inclusion messages

123

remain bonded.

Our two-step approach to shape formation attempts to miairttie amount of information
transmitted to modules in the system because it does ndniam complete blueprint of the
structure to all modules. The alternative, in systems trafopm self-assembly in a one-step
process, is to transmit information to every single modntidating on which faces that module
should allow neighbors to bond. This blueprint for the gdgéct has unacceptable communication

and storage costs.

If the system distributes the complete blueprint to all mMeduthe communication cost scales
asO(n?): the blueprintis size, and one copy must be sent for each ofrimeodules. Additionally,
because each module would need to hold, at least tempomailymplete copy of the blueprint,

the storage requirements for each module would scalas

Alternatively, an external controller could send a locaits® of the blueprint to each module
as the module joins the system. With this approach, the rgessae and memory requirements
could be reduced t®(1), but the overall communication cost still scales<s?). To understand
why, consider a single chain afmodules. The local piece of the blueprint sent to the lastuteod
in the chain would take hops to arrive. Likewise, the blueprint message sent togbers to last
module would take — 1 hops, etc. Summing all of hops taken by the individual mgssél, 2, 3,
...,n—2,n—1,n), the total is stillO(n?). This approach also necessitates that the newly attached

modules send messages back to the controller requestimgl&vant sections of the blueprint.

Distributing the unique local sections of the blueprintaaie module also requires that the sys-
tem efficiently route these local blueprint messages ta trestinations. If the routing information
is contained in the message, it adds another factot@the communication cost, makingXn®).
This is due to the fact that it could requi@n) information to describe the route to a module that
is n hops distant from the message’s source. More sophisticatdohg algorithms, like the bug
algorithms presented in Chapter 5 may reduce the cost, btihgois never free. One can always

construct test cases that elicit the worst case performfaoceany routing algorithm.

In addition to simplifying communication, the other majadvantage of self-assembling a

close-packed lattice before self-disassembling into #xsrdd shape is that the modules in the

124

lattice form a supportive scaffolding. The scaffolding addechanical rigidity while the goal

shape is being formed, and it also helps to better constrairahgn modules as they attach to the
system. The scaffolding provides more potential routinthpdor messages in the system. Like-
wise, the scaffolding provides more current paths and bHyereduces the electrical impedance

between any two modules in the system.

Once the system has formed a solid, close-packed block @rraktve have two ways to con-
vey the desired shape to the system: sculpting and distdlliplication. In this chapter, we focus
on the sculpting process. It uses inclusion messages tannfalividual modules that they are part
of the goal shape and should maintain their mechanical beitdother included neighbors when
all other modules in the system self-disassemble. Consdlgiui avoids transmitting the entire

shape description to the structure as a whole.

The sculpting process minimizes the cost of routing by aqoieting the routes for the inclusion
messages using an external controller. When distributiegiclusion messages, the system reuses
most routing information from the previous message wheel@hg the next message. As aresult,
each message carries ofly1) routing information and the total communication cosis?). For
more information, about the route construction processsai our MEng thesis [32].

The distributed duplication approach is covered by Chaplesind 8. It enables a computer-
free user interface for shape specification by providingmiigms for autonomous shape sensing
and duplication using a miniature physical model of the @eisshape. Using the duplication al-
gorithms, the system is able to autonomously sense the stiaped duplicate, a passive object
surrounded by Smart Pebble modules. The advantage of dtipfids that we completely elim-
inate the need for an external controller. This makes theesysore practical, and it eliminates
the extraordinary communication burden from whatever netad been serving as the commu-

nication link between the system and the external controlle

6.1 Sculpting

Shape formation by sculpting is a six-step process:

125

1) Self-assembly/Neighbor Discoverylhe self-assembly process attempts to construct an initial
block of programmable matter modules that are aligned irosecpacked lattice. Alterna-
tively, if the user wishes to skip the self-assembly procasscan manually assemble the
modules into an initial block. During both processes, thelules discover and begin to

communicate with their neighbors. The self-assembly meegis discussed in Section 6.2.

2) Localization During localization, each module learns its relative positwithin the initial
block of material. If the system is self-assembling, lazadion is integrated into the self-
assembly phase. If, instead, the user is manually assegibiéinitial block of material,
the user initiates the localization process by transngitdposition (POS) message to the
root module. Position messages then propagate througheeintire structure so that each

module learns its position.

3) Reflection After each module has learned its position, it sends a refle¢REF) message to
the root module. The root modules passes these REF messa@dtiorunning on the user’s
computer. Each REF message contains the position and atraantf the module that sent

it. Both localization and reflection are described in moraaillen Section 6.3.

4) Virtual Sculpting The GUI constructs a virtual model of the physical systemgigihe incom-
ing REF messages. The user then employs the GUI to selechwiodules should remain
bonded with their neighbors to become the goal shape anchvehiould self-disassemble.
This result of this virtual sculpting process is a seriesnofusion (INC) messages that will
convey the desired shape to the structure during the shap#dtion phase. For details on

how this series of inclusion messages is generated, cqB4iilt

5) Shape Distribution After this sculpting process is complete, the program geesra sequence
of inclusion messages. During the shape distribution sthges Ul transmits these inclusion
messages to a the root module. The structure then propagatesinclusion messages to
their proper destinations. As with the localization prageéhe messages only contain local

information. Shape distribution is described in Sectich 6.

126

6) Self-DisassemblyDuring the disassembly phase, the modules not designatezlitothe final
structure disconnect from their neighbors to reveal thgahhe user previously virtually

sculpted. Self-Disassembly is described in Section 6.5.

6.2 Self-Assembly

The goal of self-assembly is to aggregate a solid block frérofahe free modules available in
the system. During the self-assembly process, we want torernbat no voids are formed in
the growing structure. Voids restrict the set of shapesadhatbe sculpted from the initial block;
weaken the structure; and reduce the available commuaiicatid current flow paths. If we allow
new modules to be accreted at any location on the growingtsie it is easy to create gaps in
the structure that are theoretically difficult and pradtjcanpossible to fill; a loose module will
never fill a lattice position that is already surrounded aeétsides. Therefore, our goal is prevent
the creation gaps surrounded by neighboring modules on tharetwo sides. Doing this also

guarantees that we do not create voids in the structure.

6.2.1 Self-Assembly Algorithm

To avoid holes in the self-assembled structure, we propasienple distributed algorithm that
only requires local information. Based on this informatieach free module coming into contact
with a potential bonding site on the solidified structure tdecide whether to permanently bond
with the structure or move on and look for another bonding. sithe algorithm we describe is
similar to the self-assembly rule set generated by Mattrél. in [44] for forming a rectangular
structure. Matari€ et al.'s work focuses on the broadestioe of how to generate a set of rules
to assemble arbitrary structures, and as a result, gesexddeger, more complex set of rules that
depends on each module knowing in which of eight potentietoss it resides. In contrast, our
work focuses on developing a minimal complexity, easy to@nent algorithm that guarantees the
assembly of a close-packed lattice. By following the sedeanbly process with self-disassembly,

we eliminate the need for complex sets of rules which govdrerwand where modules may attach

127

to the growing structure.

Our self-assembly algorithm makes two assumptions. Filistnodules correctly assume the
location of the root module. This is easy to hard-code intthaaodule’s processor as location
(0,0). Second, once each module is added to the structure, it camdee it's (x,y) position.
This requirement is also easy to meet. The user informs thermdule anchored to the assembly
platform that it is the root and therefore at location (0,09 ain-rotated. Using this information,
the root can inform the module added to its right that the n@dule’s location is (1,0). Likewise,
the module added below the root is at location (0,-1), etcseBaon which of its faces the new
module receives this message, it can determine its orientdtiow that the root’s neighbors know
their locations and orientations, they, in turn, informitheewest neighbors of their locations.
More details, and a proof that this algorithm is correct amsed in [34]. Note that the algorithm
only requires neighbor-to-neighbor communication, amtbés not rely on any global information
being communicated within the structure. All modules in streicture are able to to determine

their coordinates without any concept of the structure ab@lev

The entire self-assembly algorithm, shown as pseudocodédgiorithm 9 begins as the free
module receives power when it comes into contact with a nedeady a part of the crystallized
structure. Immediately, the module queries its neighbatett®rmine its location. Based on this
location, the module then constructsat vectorpointing back to the root module. The vec-
tor may have x- and y-components. The new module permankatigs with the structure—by
calling thelatchAllFaces() function—if it detects that it has neighbors in both the xd an
directions of the root vector, (if they exist). For exammensider a new module that determines
its location is (10,2). As shown in Figure 6-1, the root vecsdahen (-10,-2) which has both x- and
y-components. As a result, the module only bonds with thecgire if it has neighbors at (9,2) and
(10,1). Instead, if the new module were located at (0,-5)thedoot vector was (0,5), the module

in question would only bond if it detected a neighbor at (0,4)

If the new module does not detect neighbors along both coemsmof its root vector, it informs
whatever neighbors it is contacting, and they deactivage donnectors releasing the module. The

module will lose power, so when it next contacts the strgtits self-assembly algorithm will

128

restart.

Once a module decides that it should permanently bond torthwigg structure, it enters a
loop in which it simply listens for disconnect request mgesaon its faces. When a new module
decides that it cannot connect to the structure, it sendsbifese disconnect request messages—
using theunlatchAllFaces () function—to all of its neighbors. When the previously a dified
module receives one of these messages on a particulartiegargviously solidified module keeps
the connector on that face deactivated for a fixed periodnoé tio allow the rejected module to
move out of range of its attractive force. This is the purpafdbedisableFace () function in the
pseudocode (line 20). Eventually, the connector is reaiett/in hopes that the bonding site will

have become valid.

Algorithm 9 selfAssemble()—algorithm uses the existence or abserteeadf a module’s neigh-
bors to determine whether it is allowed to bond with its nbigis and become a part of the growing
structure.
Require: rﬁﬁﬁs module’s location as determined by localization process
: oot « (0,0) — myPos
. if root.x # 0 then

neighborPos— (myPosx+ sign(ro_ofxxmw)

2

3

4: if neighborExistsfeighborPok= false then
5: unlatchAllFaces()
6

7

8

[

return
end if
> end if
9: if root.y £ O then
10: neighborPos— (myPosx, myPosy + signfoot.y))

11: if neighborExistaieighborPoks= false then

12: unlatchAllFaces()

13: return

14: endif

15: end if

16: latchAllFaces()

17: loop

18: for face+ 1to4do

19: if disconnectRequesteit{ce = true then
20: disableFacd@ce LOCKOUT-TIME)
21: end if

22: end for

23: end loop

Theorem 1. The self-assembly algorithm (Algorithm 9) prevents thenttion of gaps in the

lattice structure which are surrounded by more than two hbays.
Proof. Guaranteeing that the algorithm never creates a gap thatrsumded on more than two

129

sides is equivalent to ensuring that, on any vertical orzomtal line of the lattice, an unpopu-
lated gap between two distant modules is not formed. Condmieillustrative purposes, an any
unoccupied position on the lattice and the horizontal, @tigal), line extending to positive and
negative infinity from this point. If this line intersectslstified modules, (arbitrarily far away), in

both the positive and negative directions, one could imagiarking from the solidified modules

inward to fill this gap. Eventually, enough modules will beaahed so that the initial unoccupied
position has immediate neighbors to its left and right. Qg occurs, the empty position, will

be impossible to fill. As a result, if the algorithm avoidsatiag a gap, no matter how wide, along
any horizontal or vertical transect of the lattice, it wllaad creating gaps in the lattice which are
surrounded by more than two immediate neighbors.

The self-assembly algorithm, if it does not detect immedisighbors along both the x- and
y-components of a vector pointing from the potential bogdiite to the root module, assumes that
other, more distance modules may exist along those trams@st a result, by not connecting a
module to the structure, the algorithm does not risk crgagegps along these transects.

Finally, the algorithm is guaranteed not to create gapsgatba x- and y-vectors originating
at the potential bonding site but pointing away from the mooidule. For this type of gap to be
created, a solidified module would have exist farther awaynfthe root in either than x- or y-
direction than the bonding site in question. Convenieillig is impossible. As explained in the
preceding paragraph, a module will never bond if there is@otential for an empty position in
the lattice along either component of the module’s rootmeethich, in this scenario, there would

have been.

Theorem 2. The self-assembly algorithm prevents the formation ofsioi¢he lattice.

Proof. By Theorem 1, the self-assembly algorithm never creates géh more than two neigh-

bors, so the algorithm can never create a gap with four neightthe definition of a hole. [

While the algorithm presented here has pertained to a twemmonal system, the extension to
3D is straightforward. Instead of a 2D vector pointing backhte root module, each module will

have a 3D vector and may need to check for neighbors alongtée potential components of the

130

bond formed Z

Figure 6-1: During self-assembly, modules only permaneatthch to the already assembled struc-
ture if they detect immediate neighbors along a vector toattp back to the root module. The
module at (2,1) does not attach because, while it has a neigihding the y-component of its root
vector at (2,0), it does not detect a neighbor at (1,1) altvegxtcomponent of the vector. The
module at (0,-2) does attach to the crystallized structe@bse it detects a neighbor at (0,-1),
along the y-component of its root vector. The root vectorsdoet have an x-component, so the
module does not attempt to detect neighbors at (-1,-2) e2)(1,

root vector. Likewise, the 3D algorithm guarantees that@wigh more than three neighbors will

never be created which implies than holes will never be eckat

6.2.2 Self-Assembly Experiments

We experimentally tested the self-assembly algorithmguainollection of 17 Smart Pebble mod-
ules. In three dimensions, we imagine shaking a bag full ofluies to drive the self-assembly
process. The 2D analog is an inclined vibration table. Wit lucustom vibration table that
provides the stochastic forces necessary to move and akkigmodules (see Figure 6-2). The am-
plitude of the vibration can be controlled with a variac arelegn also change the tilt of the table.
The perimeter of the table is surrounded by a low barrierghatents modules from falling off.

In our experiments, we anchored one module, the root, in mecaf the vibration table at
coordinateg0,0). The root module provides the power and communication lietwieen the
system and the user. Then we tilted the table 4 degrees i@tk and y-directions to bias the

movement of all free modules toward the root module locat€0,8).

131

Figure 6-2: A vibration table is used to drive the self-asslgrprocess. It consists of a vibrating
base (a), a universal joint to control tilt (b), the assensbisface (c), and a variac (d) to control the
vibration frequency.

Using 16 randomly arranged modules, (in addition to the fisceat module), we first tested
the self-assembly algorithms. A progression of still imnaf@m one of these trials is shown in
Figure 6-3. As shown in the last frame of the figure, after ttumlates have coalesced and have
been given sufficient time to latch with their neighbors, siodidified structure can be removed

from the test fixture without falling apart.

Figure 6-4 shows how the 17 modules tended to be distributed @l modules had settled
into discrete grid positions. The data was collected fronetao$ 13 trials. Not surprisingly, the
experiments show that the modules tend to form an isoscrjlestriangular configuration. In
addition to determining the most likely distribution oftilml modules, we wanted to ensure that all
modules were able to bond with their neighbors and commteigdh the system’s PC-based user
interface. In a series of 15 trials, each using 17 modulexlgerved a total of only 22 instances
in which a module failed to localize and send a message battetoser interface through the

root module—a failure rate of.8%. In most of these cases, one or more modules was clearly

132

Figure 6-3: A collection of 16 randomly distributed SmarbBke modules, (each a 12mm cube),
and one fixed root module, (back right of each video framdj;assemble when placed on an
inclined vibration table. Initially, the connectors on kamodule are deactivated, and they are
only turned on when a module successfully communicates thghgrowing structure. The last
frame shows that all modules bond together to form a soligehiat can then be used for self-

disassembly.

133

not in contact with one more of its neighbors. In one partidylbad trial, one of the modules
adjacent to the root was about 45 degrees out of alignmeultiresin 13 of the 17 modules not
localizing. This was the only trial of the 15 in which the \altion table was unable to align all
of the modules. The average time taken to self-assembletmeotiules was 1min, 47sec. The
self-assembly process worked most efficiently when theetaltdration was swept up and down

several times through varying amplitudes.

Self-Assembly Module Distribution (17 Modules, 13 Trials)

Normalized Likelihood

Figure 6-4: When 17 modules are placed on a vibration talleded so that thé0, 0) location is
the table’s low point, the modules self-assembly into aeslpacked lattice. The likelihood that a
particular position in the lattice is filled is shown in thi®p

6.3 Localization and Reflection Algorithms

Before the Smart Pebbles system can be used to form shattes, l&y sculpting or duplication,
each of the modules must learn its location within the ihiilack of modules. Additionally, if the
system is self-assembling, each module must learn itsitotahd orientation so that it can deter-
mine whether it is bonding to the growing structure in a védication. When the user is forming

shapes by sculpting, he needs to know which modules existasdé can determine how to place

134

and orient his goal shape within the initial block of matkftiam which the shape will be sculpted.
While the user could approximate the placement by eye inlemalo-dimensional structures, it
will become increasingly difficult to do in 3D configurationsth more than a hundred modules.
To inform the user how the initial block of material is configd, each module sends a reflection
(REF) message to a GUI running on the user’'s computer. Usuagual model constructed from
these reflection messages, the user can easily determime whkin the initial block of material

to place the goal shape.

6.3.1 Localization Algorithm

When a module first receives power from one of its neighborsymediately begins sending lo-
calization (LOC) messages to its neighbors. Each loca&zahessage is a request for the receiver
to reply with its position, if it knows it. The localizatiorelgins when the user sends one module,
the root, a position (POS) message assigning that modulebéraay set of coordinates and rota-
tion. In practice, we always tell the root that it is locatedre origin, (0,0, 0), with a rotation of

0 degrees. With its position known, the root module can begsponding to the incoming LOC
messages. The root’s neighbor’s will learn their positiand then begin sending POS messages to
their unlocalized neighbors. Eventually, all modules i@ siystem will learn their location relative
to the root.

Each module must receive a single POS message in order iz&o the number of mes-
sages that need to be exchange®(s), wheren is the number of modules in the system. The
worst case running of the localization process occurs whmodules are arranged in a line. Each
module in the line cannot localize until the previous modarews its own position. Each module
requires a constant amount to time to process an incomingR&Sage from its newly local-
ized neighbor, so the total running time@gn). In other structures, thaveragerunning time is
O(m) wheremis the longest dimension of the structure. In particulag,dtierage running time is
proportional to the Manhattan distance between the roottanchost distant module.

Each POS message contains the transmitter’s rotation amshtitting face number in addition

to the transmitter’'s coordinates. By combining the tramt@ris rotation and transmitting face

135

number with its receiving face number, the receiver canrdete its own rotation using a look-up
table. Combining this with the transmitter’s coordinatas,receiver can compute its own location.
Figure 6-5 illustrates how a module’s face numbers are asdigNote that we do not specify a
module’s rotation as a number of degrees because in threendions we would need to specify
a rotation axis. Instead, we specify rotations by the mdsldiéee numbers than align with the

principal axes.

Z V4
1 51 51
2 1 2
4 &FE—-x 3| &5y 4 X
5 2 3
3 6 6

Figure 6-5: The six faces of each Pebble are numbered 1-GsHael correspond to the four
faces containing EP magnets. Face 5 is the top face, and é ottom. Rotations are specified
by which faces align with the principle axes. The figure shtwse different views of a Pebble
whose orientation is X2Y1Z5. That is, face 2 aligns with tlesifive x-axis, face 1 aligns with the
positive y-axis, and face 5 aligns with the positive z-axis.

6.3.2 Three-Dimensional Localization

Localization in three dimensions is more complex than iaesibn in two dimensions. The reason
for this is that receiving a POS message from a neighbor cetigghly constrains the rotation of
the receiver. This is because two neighboring modules ¢aamse their relative orientation about
an axis that passes through the center of the two modulesulljddcalize in three dimensions,
a module must receive two POS messages from two orthogomaitidins. One consequence of
this constraint is that a module with neighbors along onlg axis will never localize in 3D. For
example, a single chain of modules will never localize in 8Dthree dimensions, each modules

must receive two POS messages, so localization still reg@ifn) time.

136

6.3.3 Localization Experiments

To verify that the localization algorithms operate corig@nd to measure their running times, we
performed experiments in hardware and simulation. In hardywe performed a total of 256 trails.
In all trials, we arranged the modules on the test fixture shiowFigure 3-14 that provides power
to the root module, (the module clamped to the fixture), andnarcunication link between it and
an external computer. The root module was always situatéaedbwer-left of the arrangement
of modules. We started the localization process by sendjmgséion (POS) message to the root
module. As the position messages propagated, the otherleso@arned their positions. When
they did, their internal LEDs stopped flashing and stayeui $ot several seconds. We measured
the localization time with a stopwatch that we started as s@ove sent the first POS message and

stopped when all LEDs were illuminated solid.

Of the 256 hardware trials, 155 characterized the locatimdime inm-by-1 lines of modules,
wherem varied from 3 to 12. We performed at least 15 trials for eadbevafm. The other 101
trials characterized the running time of the localizatitgoathm in m-by-m squares of modules
ranging in size fromm= 2 to 5. We performed at least 25 trials for each square. Alldnivere
successful and resulted in all modules learning their ot Figure 6-6 shows the average time
required for all modules in a line to localize. Figure 6-7 whbe average localization time for
squares. The plots show that the localization algorithrmfamunication cost obeys the expected

O(n) limit though it is only tight for lines of modules.

To show that the localization algorithm®(n) time scaling continues for larger groups of
modules, we used the simulator presented in Chapter 4. Théated localization times for lines
and squares are shown in Figures 6-6 and 6-7 alongside tbe/duar results. We performed 192
trials with m-by-1 lines of modules in whicin varied over 15 different values between 2 and 50.
The minimum number of trials for a given value mfwas 10. We performed 240 trials with
by-m squares of modules in whigh varied from from 2 to 10. The minimum number of trials for
a given value oimwas 15. Using the simulator, we also simulated localizaitom-by-m-by-m
cubes of modules. In our simulatiomsyaried from 1 to 7. When simulating cubes, we performed

151 trials, and the minimum number of trials for any giverueabfmwas 16. The results of these

137

Localization Running Time for n—by-1 Lines

120 T T T
—©&— Hardware
—— Simulation

=

o

o
T

80

60

Time to Localize all Modules [s]

20+

0 10 20 30 40 50 60
n — Number of Modules in Line

Figure 6-6: As the localization algorithm indicates shooédthe case, the time required for a line
of modules to localize i©(n), wheren is the length of the line. The bars on each data point
indicate one standard deviation.

Localization Running Time for m—by—-m Squares
30 ; ; ; ; ;

N
o
T
L

nN
o
T
L

=
o
T
L

—©— Hardware

—— Simulation

Time to Localize all Modules [s]
o &

0
0 20 40 60 80 100 120

n — Number of Modules in Square (m2)

Figure 6-7: The average time required for a square sheet dules to localize scales as the
Manhattan distance between the root and the most distantilnoBor squares of modules with
the root in a corner, the Manhattan distance is proportitintéile square root of the number of the
total number of modules. The bars on each data point indarsestandard deviation.

138

trials are shown in Figure 6-8.

Localization Running Time for m-by—-m-by—-m Cubes
16 ; ; ; ; ; ;

=
~
T

=
N
T

=
o
T

fee]
T

o
T

—— Simulation |

Time to Localize all Modules [s]

IN
T

0 50 100 150 200 250 300 350
n — Number of Modules in Cube (mS)

Figure 6-8: The average time required for a cubic block of ulesito localize scales as the Man-
hattan distance between the root and the most distant modide cubes of modules with the
root in a corner, the Manhattan distance is proportionaiéocube root of the number of the total
number of modules. The bars on each data point indicate andatd deviation.

As Figures 6-6, 6-7, and 6-8 illustrate, t@n) running time bound, (whera is the total
number of modules), is not tight for all shapes. As discusdede, the localization time is actually
linearly proportional to the Manhattan distance betweermnrdiot and the most distant module. That
is, the running time scales &m) wheremis the largest dimension of the collection of modules.
Figure 6-9 shows the running time of the simulated locallirealgorithm as a function af, which
we label the object’s diameter. It confirms our assertion ttie localization time obeys &d(m)
limit.

Figure 6-10 show the running time of the localization preceshardware as we vary the
aspect ratio of a rectangle composed of twelve Smart Pebbiil®s. The left-most data point is
the localization time of a 4-by-3 module rectangle. The ri@dthta point corresponds to a 6-by-2
module rectangle, and the right-most data point corresptmd 12-by-1 module rectangle. The
plot demonstrates that even though the number of modulesinsrfixed, their arrangement plays

a large role in the localization time.

139

Localization Running Time vs. Object Diameter
1201

—— Simulated Lines

—©&— Simulated Squares
100

Simulated Cubes

@
o
T

Time to Localize all Modules [s]
] 3

n
o
T

0 10 20 3 20 50 60
Object Diameter [# Modules]

Figure 6-9: The average time required for any arrangememazfules to localize scales as the
Manhattan distance between the root and the most distanilsmo@hen the root is in a corner
of the arrangement, (as it is in all of our experiments), Memnhattan distance is the object’s
diameter The bars on each data point indicate one standard deviation

Localization Time for 12-Module Rectangles

N
(o))

N N N
o N EN
T T T
L L L

=
@
T
L

= =
N S
T T
| |

Time to Localizae All Modules [s]
5 5

©
T
L

4—b‘y—3 6—l;y—2 lZ—l‘Jy—l
Aspect Ratio (Width—by—-Height)

Figure 6-10: As a rectangular arrangement of modules appesaa square, the localization run-
ning time is minimized. This is due to the fact that a squareimize the Manhattan distance
between the root and the most distant module. The bars ondedalpoint indicate one standard
deviation. Each data point is averaged from 15 trials.

140

The simulator allows us to record the number of messagesaageld during the localization
process. Figures 6-11, 6-12, and 6-13 illustrate how thebaurof messages exchanged during
localization scales with object size of lines, squares,@rmks, respectively. Note that the scaling
is not linear as predicted above. The observed quadrat@avimhis due to the fact the simulator
counts all message types, not just POS messages, exchangegitte localization process. Each
module, until it is localized, continuously broadcastsalamation (LOC) messages to all of its
neighbors. These LOC messages are included in the messags shown in Figures 6-11, 6-12,
and 6-13. Each of the modules sends LOC messages at a fixed rate until it is localBecause
the localization process runs @(n) time, the number of LOC messages sent will therefore scale

aso(n?).

Localization Communication Cost for n—by-1 Lines

—<— Simulation

8000

7000

6000 [

5000 [

4000 -

3000

2000

1000

Messages Exchanged during Localization

o

10 20 30 40 50 60
n — Number of Modules in Line

o

Figure 6-11: Despite the fact that on¥(n) POS messages are needed to locatizaodules
(regardless of configuration), the total number of interdoie messages exchanged during local-
ization of a line scales @(n?) because we also count the LOC messages that each module sends
continuously until it is localized. The bars on each datapimidicate one standard deviation.

141

Localization Communication Cost for m—by—m Squares
9000 ; ; ; ; ;

—— Simulation

8000 [J

7000

6000

T

5000

T

4000 -

3000

2000

1000

Messages Exchanged during Localization

o

0 20 40 60 80 100 120
n — Number of Modules in Square (m2)

Figure 6-12: Despite the fact that ony(n) POS messages are needed to locatizaodules
(regardless of configuration), the total number of intedie messages exchanged during lo-
calization of a square sheet scales{s8?) because we also count the LOC messages that each
module sends continuously until it is localized. The bargaoh data point indicate one standard
deviation.

142

Localization Communication Cost for m—by—m-by—-m Cubes
8000 ; ; ; ; : ;

—— Simulation

7000

6000 [

5000

4000 -

3000

2000

1000

Messages Exchanged during Localization

o

0 50 100 150 200 250 300 350
n — Number of Modules in Cube (mS)

Figure 6-13: Despite the fact that on¥(n) POS messages are needed to locatizaodules
(regardless of configuration), the total number of interdie messages exchanged during local-
ization of a cubic block scales 8&n?) because we also count the LOC messages that each module
sends continuously until itis localized. The bars on eath pgaint indicate one standard deviation.

6.3.4 Reflection Algorithm

During the reflection step, modules transmit their locatmal orientation to the GUI running
on the user’s external computer. Reflection is only necgsshen virtually sculpting the initial
block of material. (In fact, the significantly slow down thapdication process.) It allows the
GUI running on the user’s PC to visualize the physical comfgan of the hardware modules. By
pointing and clicking on the modules in the GUI, the user adect which modules should become

part of the goal structure and which should self-disassembl

Each module sends a reflection (REF) message immediatelyiafs localized. The REF
messages propagate back to the root module by following afg®rent pointers A module’s
parent pointer is assigned during the localization pracksparticular, a module’s parent pointer
indicates the face on which the module first received a prs{fPOS) message from a neighbor.
Because modules only reply to incoming LOC messages with i@$ages after they are local-

ized, any module sending a POS message to its neighbor iargaad to have its own valid parent

143

pointer. By following this chain of parent pointers, all REfessages eventually propagate back to
the root module. For more details about parent pointerssudof84].

In a collection ofn modules, there amneunique REF messages that must propagate back to the
root module. The total communication cost of the reflectioncpss scales @3(n?). The worst
case scenario arises in a line of modules. The REF messageydbem-th modules must traverse
throughm— 1 other modules to reach the root. Summing the number of mapsrsed by all REF
messages, the total communication co€(s?).

The time required for all REF messages to reach the root isrdgnt on several variables.
Given a line of modules, the REF messages can move in logk-8tea module transmits its mes-
sage to its neighbor closer to the root, it can immediatetgptthe next incoming REF message
from its opposite neighbor. This implies a linear relatiopsbetween between the reflection time
and the distance between the root and the most distant mddudguares and cubes of modules,
this relationship is not so exact.

The root module, and other modules in its proximity, becoimake points through which all
REF messages must pass. With these modules near the ragingd@EF messages from all di-
rections simultaneously, they cannot forward the messegtseir parent modules as quickly as
they arrive. A traffic jam is created, and the running timerddgs from the ideal linear relation-
ship. The other factor affecting the running time of the iften process is the fact that not all
modules send REF messages simultaneously. Each moduke a&tF message as soon as it is
localized, but modules nearer the root localize beforedhioat are far away. In total, these factors

lead us to expect a running that that is roughly linear, but beaworse.

6.3.5 Reflection Experiments

As part of the localization experiments in Section 6.3.3,alewed each trial to continue to run
after the modules had been localized. Each module, aftatfizing, sent a REF message that
propagated back to the root module and from there to a tetrmalator running on our desktop
computer. In software, all 583 trials were successful. Irdhare, we saw 21 failures in the 256

trials. A failure is defined by a single REF message that doesamive at the root. In total there

144

should have been 2533 REF messages transmitted back toth&@lne 21 lost messages represent
a 0.83% loss rate.

Figures 6-14, 6-15, and 6-16, characterize the number afithdal inter-module messages
exchanged in the simulated system as the REF messages a®pagk to the root module. All
plots show the expectead(n?) dependency on the total number of modules in the system. tNate
quadratic nature of the three plots decreases from theHigeie 6-14) to the square (Figure 6-15)
to the cube (Figure 6-16). This behavior is explained by #ut that modules arranged as a cube
are, on average, closer to the root than are modules arrasgadine. Consequently, the average

distance traveled by each REF message is less.

Reflection Communication Cost for n—by-1 Lines
8000 ; ; ; ; ;

—— Simulation

7000

6000 [

5000

4000 -

3000

2000

1000

Messages Exchanged during Reflection

0 10 20 30 40 50 60
n — Number of Modules in Line

Figure 6-14: In a line oh modules, there are unique REF messages that must propagate back
to the root. The path they must take@¢n) modules long, so the total communication cost, that
is the number of individual inter-module messages, scal&(&’). The bars on each data point
indicate one standard deviation.

Figures 6-17, 6-18, and 6-19 show the time required for tlo¢ mpodule to receive all REF
messages in lines, squares, and cubes, respectively. Tietation between the hardware and
simulator is particularly high. As expected, the runningeiis roughly linear. There is some
degradation from this ideal relationship that is espegiaditiceable in the case of cubes (Figure 6-
19).

145

Reflection Communication Cost for m—by—m Squares
10000 ; ; ; ; ;

9000 [

8000

T

7000

6000 [

5000

T

4000

3000

2000

1000 i

—— Simulation

0 n
0 20 40 60 80 100 120

n — Number of Modules in Square (m2)

Messages Exchanged during Reflection

Figure 6-15: In a square sheetromodules, there aneunique REF messages that must propagate
back to the root. The path they must take is, on aver&jal/?) modules long, so the total
communication cost, that is the number of individual intesdule messages, scales@sq/?).

The bars on each data point indicate one standard deviation.

Reflection Communication Cost for m—by—-m—-by—-m Cubes
5 T T T

2.

15 1

0.5 i

Messages Exchanged during Reflection

0 50 100 150 200 250 300 350

n — Number of Modules in Cube (m3)

Figure 6-16: In a cubic block af modules, there ane unique REF messages that must propagate
back to the root. The path they must take is, on aver@fel/®) modules long, so the total
communication cost, that is the number of individual intevdule messages, scales@@®*/3).

The bars on each data point indicate one standard deviation.

146

Reflection Running Time for n-by-1 Lines
180 ‘ ‘ ‘ ; ;

160 -

140

=

N

o
T

100 -

o]
o
T

(2]
o
T

IN
o
T

—6— Hardware | -

N
o
T

—— Simulation

Time to Receive all Reflection Messages [s]

0 10 20 30 40 50 60
n — Number of Modules in Line

o

Figure 6-17: In a line of modules, there an) reflection (REF) messages that must propagate
back to the root module. These messages can move in loclsstépat the total time for all to
reach the root depends only the distance between the distateieen the most distant module
and the root. The bars on each data point indicate one sthddaiation.

Reflection Running Time for m—by—m Squares
200 ; ; ; ; ;

180

160 -

140

=

N

o
T

100 | —&— Hardware |

—— Simulation

D o]
o o
T T

Time to Receive all Reflection Messages [s]
N
o

20 40 60 80 100 120
n — Number of Modules in Square (m2)

N
o
o

Figure 6-18: The average reflection time in square sheelssscaughly a€(n), but as explained
in Section 6.3.4, this relationship is not guaranteed. Tés lon each data point indicate one
standard deviation.

147

Reflection Running Time for m—by—m-by—-m Cubes
600 ; ; ; ; ; ;

—— Simulation

500 1

400 [J

300 J

200 1

100 - 1

Time to Receive all Reflection Messages [s]

50 100 150 200 250 300 350
n — Number of Modules in Cube (mS)

o

o

Figure 6-19: The average time required for all reflection FlREhessages from a cubic block of
n modules to reach the root scalesréswherek > 1. The root module becomes a choke point
which cannot transmit messages to the external PC as quaskilycan receive messages from its
neighbors. As a result, the time required to transmit all Ri&Ssages degrades from its id@éh)
bound. The bars on each data point indicate one standaralidevi

148

Figure 6-20 illustrates the reflection time for 12-moduletaagles with different aspect ratios.
The left-most data point corresponds to a 4-by-3 moduleargge, the middle point to a 6-by-2
rectangle, and the right most a 12-by-1 rectangle. The potahstrates that even though the

number of modules remains fixed, their arrangement playge tale in the reflection time.

Reflection Time for 12-Module Rectangles

D
o

[4))
a
T

a
o
T

N
o

w
o
T

4—b‘y—3 6—l;y—2 lZ—l‘Jy—l
Aspect Ratio (Width—by—-Height)

Time for All REF Message to Reach Root [s]
N

w
o

Figure 6-20: As a rectangular arrangement of modules appesaa square (left-most data point),
the time required for all REF messages to reach the root ismead. The bars on each data point
indicate one standard deviation. Each data point is avdriige 15 trials.

6.4 Shape Distribution Algorithm

In this section we present an algorithm that controls anofropés the formation of multiple shapes
by sculpting an initial block of connected material. Whileop work [34] has shown that self-
disassembly can form a particular shape from an initial bolmicmaterial, the previous algorithm
was only able to form a single shape during each iteratiomefself-disassembly process, and
the resulting shape had to include a unique root module. Tdwithm developed in this thesis
removes these restrictions. Multiple shapes that are gootis or separated by any number of un-

used modules can now be formed. This flexibility allows thésting of objects with interlocking

149

sub-parts and internal degrees of freedom.

The shape distribution algorithm operates by transmitéirgingle inclusion (INC) message
to each module in the initial structure that is destined t@hmart of a goal shape. Modules not
included in any goal shape do not receive an INC message. ®dssume, by default, that
they are not included in the final structure. They will waiteeer to receive an INC message.
Consequently, once the user knows that all INC messagestiegredelivered to the modules in
the goal shapes, he must explicitly start the self-disabBgpnocess. INC messages originate from
the sculptor’'s desktop computer, pass through the testéixtnd, once in the structure, create and
follow a dynamicinclusion chain This inclusion chain is constructed from a constant amoéint
information per message, and it grows in length with eaclitiaél INC message. The algorithm
avoids encoding the detailed path that each inclusion gegsaist follow, and it avoids flooding

the system with messages.

The total communication cost of the inclusion chain aldworitis O(n?) wheren is the number
of modules included in the final structure. This bound arlsssause for each of themodules,
the INC message that informs each module of its status mag teatvavel from the root module
throughO(n) other modules. In contrast, using a shortest-path algorithroute a message from
the root to each included module also has a theoretical cariwation cost ofO(n?) but only if a
gradient descent approach is employed and there are nccldssitathe structure that could form
local minima. Once one considers broken inter-module comaation links and voids within the
initial structure, the communication cost of the routingalthm increases as each message must
contain more specific routing instructions. Given the utaety over which approach will perform
better on average, we choose the inclusion chain approadts fimplicity given the hardware’s

limited processing capabilities.

INC messages are generated by the system'’s user, oftenheitietp of a GUI. All INC mes-
sages, like all other messages, enter the initial block adutes through the root module’s serial
connection to the user’s desktop computer. As an inclusiessage moves from a module to its
neighbor, it extends the tail of anclusion pointer chainFigure 6-21 shows how inclusion mes-

sages follow this chain for a specified distance termedhtipecount Once a message has traveled

150

the specified number of hops, it branches off of the chain énsihecifiedoranch direction The
hop count and branch direction are pieces of informationexhby the message itself—they do
not come from the modules in the structure. However, the riesdua the structure do store the
inclusion pointer chain. Each module only needs to rememhere to redirect an incoming INC
message with a hop count greater than one.

After branching, the old inclusion pointer chain may be keged, or it may be truncated and
redirected. The module that the message reaches aftehimgraff of the inclusion pointer chain
is included in the structure. If the old chain is truncatde todules in the discarded portion of
the chain maintain their pointers, but do not affect the stfapmation process.

INC messages carry additional information. First, eachsags contains agnorefield which
may be used to counteract the message’s typical effect degtsnation module. This module,
instead of assuming to be included in the final structurecéffely ignores the INC message. The
advantage is that a module may be part of the inclusion poahtgin without being a part of the
final shape. This allows the formation of an unlimited numisedisjoint shapes from one initial
block of material during a single self-disassembly process

The second auxiliary piece of information carried by anusan message is tlggoup number
When an INC message reaches its destination, the group musrassigned to the module. During
the disassembly phase, if two included modules have diffegeoup numbers, they disconnect
from each other. Likewise, if their group numbers are idmifithey remain bonded. Group
numbers will allow the formation of contiguous interlocgiahapes.

In practice, INC messages are ASCII strings:
INC, <hop count-, <branch dir>, <ignore>, <group>.

Each module employs Algorithm 10 when processing an incgniNC message. When a
module receives an INC message, it first checks the hop ctioat). If that value is 0, the
receiving cube is the intended destination. In additiorthé ignore flag is not set, the module
records the fact that it should be a part of the final strucincesaves the group number included in
the message (lines 7-8). A hop count of 1 indicates that otteeafeceiver’'s immediate neighbors

is the message’s intended destination. The receiving neagsiés its own known rotation and the

151

message’s branch direction to determine the face that dlmetransmit the message after the hop
count is set to O (line 10-11). This inclusion pointer dir@ctis stored as part of the module’s
state (line 12). Finally, if a module receives an INC messaige a hop count greater than 1, it
decrements the hop count and then retransmits the mess#geface indicated by the previously
stored inclusion pointer direction (line 14). The algamitierminates when the module receives a

disassemble (DIS) message.

Algorithm 10 parselncMsg—Inclusion Message Processing Algorithm

1: included= false

2: incChainPtr= NULL

3:

4: repeat

5: wait for INC msg. w/ hop couriC, branch dir.BD, ignore flagiGN, and group numbe&sRP
6: ifHC=0andIGN =0then
7

8

included= TRUE

: myGroup= GRP

9: elseifHC =1then

10: txFace= branchDirToFacéiD)

11: gueuelNCQkFace «, 0,BD, IGN, GRP
12: incChainPtr=BD
13: else
14: gueuelNGfcChainPtr, 0o, HC — 1, BD, IGN, GRP
15: endif

16: txQueuedMsgs()
17: until DIS message received

The queueINC function on line 11 builds an inclusion message and placesthie transmit
gueue of the specified face using thid 1TxBuf function from Chapter 5. The second argument to
the function specifies the number of attempts that the syskemld make to transmit the message
before giving up.

Proving the correctness of the shape distribution algerithquires a description of the shape
one wishes to form. In our system, generating a descriptidhengoal shape is facilitated by a
GUI that allows the user to virtually sculpt the desired shapd then generates a list of inclusion
messages that are transmitted to the root and distributefB4] we show that this approach is
efficient and correct. While the prior proof did not incorpta the concept of ignored modules,
their effect is negligible, and we will not repeat the proefé Additionally, the group code carried
in each inclusion message has no effect on the algorithm.

Figure 6-21 illustrates the propagation of eight inclusioassages as they form a simple

wrench from a 3-by-4 block of material. As indicated by thet tbove the modules in Figure 6-

152

21(a), the first inclusion messageli¥C,0,n/a,true,0. The second inclusion message reaches
module A with a hop count of 1, indicating that one of A's néighs is to be included. The branch
direction of this message is “up,” so the hop count is decrgeteto 0 and the message is sent to
module E. Module A sets its inclusion chain pointer to E. Thiedtmessage reaches A with a hop
count of two, follows A's inclusion chain pointer to E, andeyls the message’s branch direction
by moving to the right and including module F. Jumping ahedtér Module L is included as
shown in (f), the next inclusion message modifies module @&kision chain pointer from “up” to
“down” to include C. Module K’s inclusion chain pointer $gloints to module L, but the inclusion

of modules C and D is unaffected.

HC=0, BD=n/a,IGN=true HC=1, BD=up,|GN=false

| J K L | J K L

E F G H E F G H
T

A B C D A B C D

T T

(@) (b)
HC=2, BD=right,IGN=false =~ HC=3, BD=right,IGN=false
| J K L | J K L

—5F |G| H

B C D

HC=4, BD=up,IGN=false HC=5, BD=right,IGN=false

P3Pk L Ll 9| KL
E—SF—G | H E—>F—>G | H
T T
Al c|o Al c|o
T T

HC=4, BD=down,|GN=false HC=5, BD=right,IGN=false

| J K— L | J K— L
E—F—G H E—F—G H
T ! T !

A B (o) D A B C—D
1 1

Figure 6-21: Eight inclusion messages are used to creatmpesiwrench from a 3-by-4 block
of programmable matter. The root module is labeled A. As nexlare included in the final
structure, they change from transparent to shaded. Thesinahe figure represent the inclusion
chain pointers stored in the modules.

153

6.5 Self-Disassembly Algorithm

The key step for shape formation with the Smart Pebbles imtBemodule disconnection process
that must occur after all modules know whether to remain asqiaa finished object or to dis-
connect completely. The challenge of this disconnectiatgss is that a module loses its ability
to function once it breaks its mechanical connection with tieighbor supplying it with power.
Furthermore, all modules that are dependent on that moduledwer will also lose power and

will not be able to break additional magnetic bonds.

6.5.1 Parents, Children, and Neighbors

A tree can be used to represent how power is transmitted ghran initial block of modules.
Because it is connected to an external power supply, the lm@danected to the user’'s PC, is the
root of this power transfer tree. Every other module in tlee thas one parer®, This parent is
the neighbor that supplies the module with power. Converseery module to which a module
supplies power is a child. Children of a module are denotethewelC. Parents and children are
both subsets of a module’s magnetically bonded neighidardn practice, current often follows
many different paths from the root to any other implying thamodule should have multiple
parents. We disallow multiple parents by definition becaihey only serve to complicate the
disassembly process. The key concept is that althoughreliffeneighbors could also supply it
with power, a module will never lose power so long as it is ated to its parent. These child and
parent relationships are defined during the assembly pgoéesodule is not allowed to become

the parent of another until it has a parent of its own.

6.5.2 Child-to-Parent Disconnection

We have designed and implemented Algorithm 11 which engtegsan initial block of material
can disassemble correctly; that is, disconnecting boratsstiould be broken and keeping those
that should be preserved. In general, the disconnecticoritigh operates by ensuring that a

module has no children before disconnecting from its paréra module is a part of the same

154

finished shape as its parent, the child uses a child remowsdage to inform its parent that it no
longer needs to be considered a child. The algorithm usedNsd®?, andC to keep track of a
module’s bonded neighbors, parent, and children, resgdgtiWe use two additional set§,and

K, that are initially empty. All neighbors from which a modias received group (GRP) messages
are added t&. If a neighbor’s group matches the receiver’s, the neigidadded to thé&eeplist,

K.

Algorithm 11 selfDisassemble—Ensure that the self-disassembly psasesrganized so that
modules do not lose power before they have broken all mecadmonds with their neighbors.

Require: N: set of neighbors
Require: C: set of childrenC c N
Require: P: single-element set containing pardat_ N
Require: G: set of neighbor from which module has received GRP msgs.
Require: K: set of neighbors with which to retain module’s bonds
:G=K=g
wait for DIS msg. to be rcvd. on facgFace
queueDISC\ rxFace)
queueDIS{\ (rxFaceUC), DIS-RETRIES)
repeat
txQueuedMsgs()
until txQueuelsEmpty \ rxFace

eoNodRwhE

if includedthen

10: queueGRRN, o, myGroup

11: repeat

12: if GRP msg. rcvd. (on faoexFacespecifying a neighbor in groupeighborGroupthen
13: G = GUrxFace

14: if neighborGroup= myGroupthen

15: K =KUrxFace

16: else ifrxFace# P then

17: queueUnlatchkFace o)

18: end if

19: end if

20: txQueuedMsgs()

21: until txQueuelsEmpty) and N = G and N = (PUK)
22: if myGroup# parentGroupor parentGroup= & then

23: gueueUnlatchy,);
24: else

25: queueCLDP, «);
26: endif

27: else

28: queueUnlatciN\ (CUP)), »)
29: queueGRRL, o, myGroup
30: repeat

31: txQueuedMsgs()

32: unti N=P

33: queueUnlatchy,)

34: end if

35: repeat

36: txQueuedMsgs()
37: until N=g

The algorithm begins by waiting for a disassemble (DIS) ragesfrom some neighbor. The

155

face on which the message arrives is represented by thestghent satxFace When the mod-
ule receives a DIS message, it forwards the message to itserniline 3). If the children do not
receive this message, there is no guarantee that they edivee a DIS from any other source. In
line 4, the DIS message is also sent to the module’s neigtithatsare not children to speed its
propagation throughout the structure. To prevent two mexltrom repeatedly sending DIS mes-
sages to each other, a DIS message cannot be sent back todbkednom which it was received.
After the DIS messages that are to be transmitted have bemredquwe continue attempting to
retransmit them until the transmit queues for all neighlasesempty (line 7). By passing infinity
to queueDIS in line 3 when the algorithm queues the DIS messages for tlteiles children, the
algorithm ensures that thexQueuedMsgs function will never stop attempting to deliver the mes-
sage until it is successful. This guarantees that moduléfdren receive the DIS message before
the algorithm moves past line 7. In contrast, the DIS-RETRfarameter in line 4 indicates that
thetxQueuedMsgs function only makes a finite number of attempts to send therddSsage to the
module’s non-child neighbors before theQueueIsEmpty returns true. Once the children have
received the DIS message, the algorithm branches (line @rakng on whether the module is

included in any of the final structures being formed.

If the module is not included in the final structure, the ral@vpseudo-code begins on line 27.
The algorithm begins with the module queuing an unlatch ags$or all of the module’s neigh-
bors except the module’s children and parent. Then, in IBelt® module queues group (GRP)
messages for its children. Group messages simply inforimré@pients of the transmitter’s group.
The infinity parameters passed to fpeueUnlatch andqueueGRP functions in lines 28 and 29,
would normally indicate that all of the unlatch and GRP mgssawill be repeatedly transmitted
until successfully received, but the receipt of an unlatelssage purges the corresponding transmit
gueue; there is no point in continuing to transmit a messageeighbor that is no longer present.
(This behavior is not shown in the pseudo-code.) Now thatutilatch and GRP messages are
gueued, the algorithm continually transmits them (line3&D-until the module’s only remaining
neighbor is the module’s parent. This elimination of neigisresults from the pseudo-code on

line 33. Once a module’s only neighbor is its parent, the n®dueues an unlatch message for the

156

parent and waits (lines 35—37) until the message is suadgsshnsmitted. When it is, the par-
ent is removed from the module’s list of neighbors, indiegtihat the module is now completely

disconnected.

Alternatively, if the module is included in the final strucguit behaves differently. Lines 11—
21 of Algorithm 11 form a repeat-until loop that eliminatdsa a module’s neighbors (except
its parent) with group numbers that do not match its own. Betbe loop begins in line 10, the
algorithm queues GRP messages for all neighbors, incluti@gnodule’s parent and children.
The infinity parameter in line 10 ensures that these GRP mgessare sent repeatedly by the
txQueuedMsds function until they are received. Once the loop beings, therdéhm checks for
any incoming GRP messages from its neighbors (line 12). & isrreceived, the transmitting
neighbor,rxFace is added tdG, the list of neighbors from which the module has received GRP
messages. If the GRP message indicates that the neighlboup ¢ the same as the module’s
(line 14), then that neighbor is added to the module’s kesti(line 15). If the neighbor’s group
number differs from the module’s, and if the neighbor is ra tnodule’s parent, the module
gueues an unlatch message for the neighbor in line 17. THeéadlnmessage overwrites any

pending GRP message destined for that neighbor.

This process of transmitting and receiving GRP messagdselmitinate all of a module’s
neighbors other than its parent and the neighbols ifthe loop ends in line 21, when the transmit
gueues of all neighbors have been emptied, the module heiseda GRP message from each of

its remaining neighbors, and its only remaining neighboesaJ K.

The module’s children are eliminated over the course of dpeat-until loop in lines 22—-26.
To consider the disconnection process complete, the maadhljeneeds to inform its parent that
it is no longer the parent’s child. Exactly how the moduleoimfs its parent is determined by
line 22. If the module’s group is different than its paren{sr if its parent does not belong to a
group because it is not included in the final structure), tioglule queues an unlatch message for
its parent. When this message is received, the two modutesmiiect and the parent no longer
considers the module its child. Alternatively, if the moglaind parent share the same group, the

module sends a child removal (CLD) message to its parent mMiessage informs the parent that

157

the module has performed all necessary tasks and no longgres a power source. As a result,
the parent removes the module from its list of childi@nin this manner, the parent will eventually

be left with no children so that it can sever the bond with s garent.

6.5.3 Disconnection in Action

Figure 6-22 shows Algorithm 11 in action. In the figure, (g)resents the state of the modules
after the DIS message has been distributed and the moduwleskehanged GRP messages, but
before any have begun to disconnect from their neighbors.cblor of each module indicates the
group to which it belongs. Module C is not included in any & final structures. As shown by
the transition from Figure 6-22(a) to (b), disconnectiogibhe when the modules without children
(E, F, and H) sever the relationships with their parentshéndase of E, its parent belongs to the
same group, so it sends a CLD message that breaks the pdatioinship while maintaining the
physical bond. Module F belongs to the same group as its heigke, so G is in F's keep list.
Given that all modules have already exchanged GRP mesdégesate satisfies the conditional
in line 21 of Algorithm 11. Consequently, F executes line 2&he pseudo-code and transmits an
unlatch message to its parent. Module H disconnects froonigsnon-parental neighbor, module
D, because they are in different groups.

In subfigure (b), module D has no remaining neighbors exdgarent, module C, which is
not included in the structure, and therefore lacks a groule cdlodule D therefore satisfies the
condition on line 22 of Algorithm 11, and it sends an unlatassage to C to disconnect from its
parent. Without any remaining connection to the structtire,shape formed by modules D and
E loses power in subfigure (c). Also shown in the transitiamfr(b) to (c), module H sends its
parent, G, a CLD message leaving G without children.

As soon as G has no children, it disconnects from its parecdse it is not included in
the structure. After disconnecting, the shape formed byutesdF, G, and H loses power. This
disconnection is the only change as the system transitimmns Figure 6-22(c) to (d). Once in
the state shown by (d), module C realizes that it now has ridrelm and no neighbors except its

parent. Because it is not included, C can disconnect fropaitent.

158

In Figure 6-22(e), module B has no children and no neighbtiverdhan its parent, allowing
B to send a CLD message to its parent, A. Module B sends a CLBagesnstead of an unlatch
message because it knows that A is a part of the same groupn Wheceives this message,
the parent-child bond between A and B is broken, transitigrihe system to the state shown in
subfigure (f). Finally, module A is left with only its parersp A symbolically disconnects from
the user’s desktop computer. At this point, all modules Hasepower, but all of the necessary

bonds have been maintained, and the desired shapes haviebeed.

= o

F oo G o

(a)

"=
(b)

phs
(c)

s

B D, E
m
B = D,LE
B DeLE
e H

(d)
TASB:. Pop ©

Fore Goo H
(e)
TA - B C Do, E
Fore Goro H
®
TA o B C D.,E
Fote Goro H
@
A, B C D,.E
parent—> child powered
e honded unpowered

Figure 6-22: Disconnection occurs in an orderly fashion.chEeolor of module in the figure

represents an object that is to be formed from the initiatklf material. As modules disconnect
from the structure and lose power, they change from filledroptg. Before disconnecting, a
module must ensure that all of its neighbors that depend &or power have completed their
disconnection process. Module A is the root.

159

6.5.4 Correctness

The correctness of Algorithm 11 can be proven using indaatiothe height of the power transfer

tree.

Theorem 3. Algorithm 11 results in a neighbor disconnection order timatintains power in each
module until it has finished disconnecting from all uninéddheighbors and neighbors with group

numbers different from its own.

Proof. Base caselree height 1. A tree of height one has a single parent andpteutthildren that
are the leaves of the tree. These children may or may not baetiaglly connected neighbors.
If a child has magnetically connected neighbors, it exckam@RP messages with them. If the
groups of two neighbors are different, or if either neighi®not included in any of the final
structures, the neighbors unlatch (line 17). If they ardngngame group, they do nothing. Once a
leaf module handles its neighbors appropriately, the leaéis its parent-child bond with the root.
If the root and leaf are in different groups, the leaf sendgtiot an unlatch message (lines 22—-23).
Otherwise, the leaf sends the root a CLD message that breaeksatent-child connection while
maintaining the magnetic bond.

As we set out to prove in the theorem, the following occurgsirh module before it potentially
loses power by disconnecting from its parent: an unincludedule completely disconnects from
all neighbors and then its parent; an included module witigmetically connected neighbors in
groups other than its own detaches from these neighborssiamdtaneous with power loss, a
module disconnects from its parent if their groups differ.

Induction: Assume the disconnection process operates correctlydes wf height. To com-
plete the proof, we need to show that the disconnection peowerks correctly for trees of height
n+ 1. Following this approach, a tree of height 1 can be viewed as a tree of heighwith one
additional set of leaves. These leaves may or may not be rieglhebonded with any other mod-
ule in the entire tree. Whether or not they are bonded doeshastge how they act. Just as in the
height-1 base case, the leaves exchange GRP messagesawithdnetically bonded neighbors

and break their magnetic connection if they are in diffeggotps or if either is not included in the

160

final structure. Once the leaves have broken all bonds exlsepé they share with their parents,
the leaves break their parent-child bonds (by unlatchirgeading a CLD message).

As in the base case, all leaves, before losing power, haveri®cted from their neighbors
as needed. Unincluded leaf modules have broken all of thegnetic connections. Included
leaf modules have broken their magnetic connections witfhisers belonging to groups different
than their own and maintained their connections with neigblof the same group. With the leaves

removed, tha+ 1 height tree is now an height tree. O

6.5.5 Self-Disassembly Running Time Experiments

We characterized the running time and communication casldidisassembly following the same
procedure as in Sections 6.3.3 and 6.3.5, which we used taatkaze the localization and re-
flection algorithms. After receiving all REF messages, veeiésl a disassembly (DIS) message
instructing the system to break all inter-module bondsrtfataas we issued the DIS command,
we measured the time required for the system to break allvond

We performed 154 hardware trials on 3- to 12-module lines@Glials on 2-by-2- to 5-by-5-
module square sheets of modules. In hardware, the seBsdisgbly algorithm operated correctly
in 202 trials, or 93.1% of the time. If a single pair of moduia$ed to break their shared bond, we
marked the trial a failure, so the percentage of all bondswieae correctly broken was actually
much higher. In simulation, we performed 583 trials withen square sheets, and cubic blocks.
All of these trials worked correctly. This leads us to bedi¢hat the algorithm is working correctly,
but its robustness could be improved. One particular proldethat, due to variations in the size
of the Smart Pebbles, the modules realign as mechanicalsbanedbroken. The result is that
some communication links fail during the self-disassenmsycess. This can make it impossible
to correctly complete the self-disassembly process.

Figures 6-23, 6-24, and 6-25 illustrate that the runningetohthe self-disassembly algorithm
isO(n). This bound is only tight in the case of lines of modules. e$, a module must wait for all
modules farther away from the root to disconnect beforentdiaconnect from its neighbor closer

to the root. The root module must wait far— 1 other modules to disassembly before it can do

161

so. Because each module requi@d) time to disassembly once its parent is its only remaining
neighbor, the overall running time of the self-disassenpibbcess i€(n). Figure 6-26 illustrates
that, for a fixed number of modules, arrangements that moselyl approximate a cube will self-
disassembly more quickly than arrangements with largecaspgos. In arrangements other than
a line, the many modules can self-disassembly in parakethy reducing the running time of the
algorithm. In particular, the self-disassembly time i€hnly proportional to the distance between

the root and the most distant module (see Figure 6-27).

Disassembly Running Time for n—by-1 Lines

D
o

a
o
T

IS
o

—©&— Hardware
—— Simulation

N
o
T

Time to Complete Self-Disassembly [s]
5 8

0 10 20 30 40 50 60
n — Number of Modules in Line

Figure 6-23: The time required for all modules in a line td-skdassemble scales linearly with the
length of the line. The bars on each data point indicate caredsird deviation.

We recorded the number of messages exchanged during thiisstsembly process using the
Sandbox simulator presented in Chapter 4. The self-disgsdggorocess is initialized by broad-
casting a single DIS message to all modules in the structutask that require®(n) messages.
Then, each of thea modules must exchang®(1) group (GRP) and child (CLD) messages with its
neighbors. Therefore, the total number of messages exedahging the self-disassembly process
is O(n). This theoretical bound is confirmed by Figures 6-28, 6-28, &30 which all illustrate a
linear relationship between the number of modules and th#beu of messages exchanged during

self-disassembly.

162

Disassembly Running Time for m—by—-m Squares
35 T T T T T

30} |
251 .

l] /%]
15} |1 | - 1

—©— Hardware

—— Simulation

0 T
0 20 40 60 80 100 120

n — Number of Modules in Square (m2)

Time to Complete Self-Disassembly [s]

Figure 6-24: The time required for all modules in square steeself-disassembly obeys &{n)
bound, where is the number of modules in the square. The bars on each dataticate one
standard deviation.

Disassembly Running Time for m—by—-m-by—-m Cubes
25 ; ; ; ; ; ;

15F

10

Time to Complete Self-Disassembly [s]

5r i
0 50 100 150 200 250 300 350

n — Number of Modules in Cube (mS)

Figure 6-25: The time required for all modules in a cubic kltxself-disassembly is less than the
theoreticalO(n) bound because many bonds can be broken simultaneouslyaf$iemeach data
point indicate one standard deviation.

163

Self-Disassembly Time for 12—-Module Recatables

N
(63}

N
o
T
L

Time to Complete Self-Disassembly [s]

,,
10 . .

4-by-3 6—t;y—2 12-by-1
Aspect Ratio, (Width-by—-Height)

Figure 6-26: As a rectangular arrangement of modules appesaa square sheet, the self-
disassembly process runs more quickly because many bondsedaroken in parallel. The bars
on each data point indicate one standard deviation. Eaehpaatit is averaged from 15 trials.

Self-Disassembly Time vs. Object Diameter

—— Simulated Lines
—&— Simulated Squares
Simulated Cubes

a
o
T

IS
o
T

N
o
T

Time to Self-Disassembe [s]
8

=
o
T

0 10 2‘0 3‘0 4‘0 50 60
Object Diameter [# Modules]

Figure 6-27: The self-disassembly time of a group of modubetes linearly with the distance
between the root and the most distant module. When the root ke perimeter of the collection
of modules, (as it is in all of our experiments), this diserscthe diameter of the object. The bars
on each data point indicate one standard deviation.

164

Self-Disassembly Communication Cost for n—by-1 Lines
200 ; ; ; ; ;

180 1

160 - J

140 1

120 1

100 - J

o]
o
T
L

D
o
T
L

N
o
T

—— Simulation

N
o
T
L

10 20 30 40 50 60
n — Number of Modules in Line

o

Messages Exchanged during Self-Disassembly

o

Figure 6-28: In a line oh modulesO(n) messages must be exchanged during the self-disassembly
process. The bars on each data point indicate one standaaticle.

Self-Disassembly Communication Cost for m—by—-m Squares
900 T T T T T

8oof .
700 :
600 .
500 :
400+ .
300f :
200f .

—— Simulation

100 - J

0 20 40 60 80 100 120
n — Number of Modules in Square (m2)

o

Messages Exchanged during Self-Disassembly

Figure 6-29: In a square sheetrmfnodules,O(n) messages must be exchanged during the self-
disassembly process. The bars on each data point indicatstamdard deviation.

165

%\Self—Disassemny Communication Cost for m—by—-m-by—-m Cubes
7000 ‘ ‘ ‘ ‘ ‘ ‘ —

—— Simulation

6000 [

5000

4000 -

3000

2000

1000

o

50 100 150 200 250 300 350
n — Number of Modules in Cube (mS)

Messages Exchanged during Self-Disassem
o

Figure 6-30: In a cubic block af modules,0(n) messages must be exchanged during the self-
disassembly process. The bars on each data point indicatstamdard deviation.

6.6 Shape Distribution and Disassembly Experiments

We have performed several end-to-end self-disassembBriexents in both simulation and hard-
ware. In these experiments, we used the sculpting processited in this chapter to convey the
desired shape to the initial block of modules that we assedniby hand. Because the shape dis-
tribution and self-disassembly phases are distinct, weameerned with the success of each. The
first experiment we performed consisted of fully disassemgld 3-by-3 block of modules that did
not contain any goal shapes. This is shown pictorially iruFég6-31(a). In 12 of 15 hardware ex-
periments, all bonds were broken as expected. In the othee8,tthere were 2, 3, and 4 unbroken
bonds. In all three cases, the initial shape was poorly cocistd and the modules far from the
root did not align well with their neighbors. As a result, welieve communication failures, not

the algorithm, led to the unbroken connections.

We performed 67 additional experiments with other goal skdp test the system’s ability to
use the ignore and group fields of an inclusion message. Tlkesomplex experiment formed 6

different Tetris pieces from a 4-by-7 block of modules. Tiyefour of the 28 modules were in-

166

:
D HE : PEIIT
I - HEEE
. B M- A! \ - =

() (b)

Figure 6-31: We have used the Smart Pebbles to form a numhkfferfent shapes that test the
ability of the hardware and algorithms to form multiple dgaobus and discontiguous shapes.

cluded one of the goal shapes. The results for both the siionga(55 experiments) and hardware
(12 experiments) appear in Table 6.1. In the table, the stispr#bution success rate is measured
by observing which Pebbles know that they should be a parbalf sfructure. The disconnection
success rate is the number of bonds that behaved as expedtksdidy the total number of bonds

in the initial structure

Table 6.1: Experiments show the algorithms working colyect

Goal Shape(s Sim /| Number Success Ratéso|
P HW | Trials | Distribution \ Disconnection
. Sim| 15 N/A 1000
Figure 6-31(@) |\ | 15 N/A 95.0
. Sim| 15 1000 1000
Figure 6-31(b) |\ 5 1000 98.3
. Sim| 15 1000 1000
Figure 6-31(c) |,y 5 1000 96.7
Figure 6-31(d), Sim | _ 15 1000 1000
. Sim | 10 1000 1000
Figure 6-21(h) |\ 2 1000 97.1

The results in Table 6.1 show that the shape distributioardalgn works flawlessly in both
simulation and hardware. We only see errors when perforaisgpnnection experiments in hard-
ware. Even so, the overall disconnection success ratesilhgoed. This leads us to believe that
the disconnection algorithm functions correctly, but thatuliarities of the hardware are interfer-
ing with its operation.

We have observed four particular hardware issues thattaffealisconnection process. First,

all modules are not exactly the same size. As a result, algmrrrors can accumulate, result-

167

ing in marginal or no communication between neighbors. 8ecduring the assembly process,
previously bonded modules are sometimes pulled out of iposéis new modules are added to
the structure. This results in the connected modules Igsinger, resetting their states, and intro-
ducing inconsistencies in the system. Third, the discoime@rocess releases internal stresses
as some of the magnets turn off. Given that we see the moduwemgas they disconnect, we
suspect that this may also result in modules temporariipngppower. Finally, the power supply
sourcing power to the root module is current limited. Whenaute deactivates an EP magnet,
it momentarily draws 4A. The simultaneous deactivation ahsnEP magnets during disconnec-
tion often pegs the power supply at its current limit, potdht preventing some modules from

unlatching.

168

Chapter 7
Duplication

This chapter explores an alternative to virtual sculptimat tve calldistributed duplication Dis-
tributed duplication operates as follows. A passive objgdturied under, or submerged into, a
collection of programmable matter modules. Upon receidrggart signal, the all modules me-
chanically bond with their neighbors to encase the origitgct in a solid block of material. Once
solidified, the modules execute a distributed algorithn sleases the shape of the original object.
After the system has captured the shape of the originaledtes one or more, potentially mag-
nified, replicas of the object using the rest of the prografmimaatter through self-disassembly
by selectively unlatching the unnecessary modules fronirtiti@l block of material. When this
self-disassembly is complete, the user can brush away thly Késconnected modules to reveal
a replica of the original object. The algorithm requif@dl) space and exchang€gn) messages

per module in a system withmodules.

7.1 Duplication Algorithms

The distributed duplication algorithm is a multi-step pss that is able to sense the shape of a
passive object that is surrounded by programmable mattdutes and then form a duplicate of
that object using additional modules within the same ihlilack of material. The algorithm is

completely distributed, all modules execute the same caxlg all computation occurs on-board.

169

The algorithm, illustrated in Figure 7-1, is composed of fivgjor phases:

1. Encapsulation and Localization
2. Shape Sensing / Leader Election
3. Border Notification

4. Shape Fill

5. Self-Disassembly

In short, after all modules are localized and bond togethentase the object being duplicated,
the algorithm senses the border of the original objecttesemduplicate border beside the original,
informs all modules inside of this border that they form thuplicate shape, and then prompts all
modules except those that form the duplicate shape to s&lfskmble. The user can they brush
aside the extra modules much like a sculptor would removaestone from a block of marble to

reveal the newly created duplicate object.

7.1.1 Encapsulation and Localization Algorithm

The shape duplication process begins when the user susdb@agassive object to be duplicated
with a collection of programmable matter modules. In a 3Dtayswith sand-sized patrticles,
we envision literally burying the object to the duplicatddsing the 2D, centimeter-scale Smart
Pebbles, we can use an inclined vibration table, the 2D gnalaa bag of sand, to surround
the passive object with active modules. Once the object iosnded, the user sends a start
command to one module to initiate the encapsulation andizat@n process. The recipient of this
message arbitrarily assumes that its coordinates are éh@}hen it informs all of its neighbors of
their coordinates. As each module learns its coordinatdsmihe system, it mechanically bonds
with its neighbors to rigidly encapsulate the passive didpeing duplicated. Once bound to its

neighbors, each module enters the shape sensing and |éaxt@rephase.

170

3 4 5 6 7 8 9 10 8 9 10 3 4 5 6 7 8 9 10
L] EESSSE | N
| M - I H HE
| —M - Va HN
(J)) Bl [H*FF:(FIII
3 4 5 6 7 8 9 10 9 10
LT T pumEtR .
& | L Bl Bl | [Him
2 I |
Il k n ik | DDDD(h)DDDD
g
.original shape .sense msg. received duplication msg. received .border msg. received ¥ leader module
.module included in final structure .fiII msg. received disassembly msg. received e— message (source/destination)

Figure 7-1: After localization, the distributed duplicatialgorithm begins in (a) by routing a sense
(SEN) message around the border of the obstacle. As showi itthé message sent by the module
with the highest unique ID will eventually return to its sendprompting that module to route a
duplication (DUP) message around the border of the obs{agleUpon receiving a duplication
(DUP) message, a module sends a border (BOR) message tamjigjate that will become the
border of the duplicate object. After all duplicate bordesdules have sent confirmation (CON)
messages back to the leader (d), the leader broadcastsril)linjessage (e) informing modules
contained by the new border that they are part of the duplisagpe and causing them to send
confirmation (CON) messages back to the leader, (f). Uposivieg all confirmation messages,
the leader broadcasts a disassemble (DIS) message (ghgalsmodules except those in the
duplicate shape to self-disassemble (h). Note: the keyhisrfigure holds for all others in this
chapter as well.

171

7.1.2 Shape Sensing / Leader Election Algorithm

The goal of the sensing phase is to two-fold: determine thiengger, area, and dimension of the
original obstacle’s bounding box; and elect a leader modualéhe perimeter of the object being
duplicated. After a module is localized by an incoming gosi{POS) message, it detects which of
its neighbors are present by assuming that unresponsigeliais are absent. The module assumes
that these missing neighbors correspond to the obstactemtex by the original object to be
duplicated. Then, a module attempts to route, (using thealwayithm as explained in Chapter 5),

a sense (SEN) message to each of its missing neighbors. $&etla@ destination coordinates
are occupied by the obstacle being duplicated, the SEN mess#l never be delivered to its
destination, but this is the intent. Instead, the SEN me=ssagjl traverse the entire perimeter of
the obstacle being sensed. Eventually, it will return tosgsder, who will then know that the

message cannot be delivered.

3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3‘4‘56 3‘4‘56 3‘4‘56
LT LT LR hha]] : :
N (X1 (1T (1T [
3 3 (——1 3 z{(—\ 3 L—\ 3 L—\ 3 L—\ 3 L—\
- I m i QL R nE RERLEE mE
2 2 2 2 2 2 2
L I B ha T B 0 I B [I B el 0 I B o I L
t LI | [| A | [| [4 |7 | o G
perimeter: 0 +1 - 1 perimeter: 1 +1 - 2 perimeter: 2 +2 - 4 perimeter: 4+1 - 5 perimeter:5+1 - 7 perimeter: 6 +1 - 7 perimeter: 7+1 - 8
area=0 area=0+6 - 6 area=6+5 - 11 area =11 area=11-(3+1) -7 area=7-(3+1) - 3 area =3
x-extents: [5,5] x-extents: [5,6] x-extents: [5,6] x-extents: [5,6] x-extents: [3,6] x-extents: [3,6] x-extents: [3,6]
y-extents: [1,1] y-extents: [1,2] y-extents: [1,3] y-extents: [1,4] y-extents: [1,4] y-extents: [1,4] y-extents: [1,4]
@ (b) (© (d) (e) ® @

Figure 7-2: As the modules attempt to use the bug algorithmotite a sense (SEN) messages
from its source at (5,1) to its non-existent destinatiorbe);, they update the perimeter, area, and
bounding box fields carried within the message. The perinieiecremented as the result of every

“collision” with the obstacle, and area is accumulated towrow. When the message returns to

its sender, these parameters accurately describe thelghsta

In the process of traversing the obstacle, the sense (SEdhage is modified by each module
through which it passes so that by the time the message setmiiits sender, it holds obstacle’s
area, perimeter, and the extents of the obstacle’s bourdirng Figure 7-2 shows this process in
action. The perimeter computed by the SEN message is inatecherhenever the bug algorithm
causes the message to virtually collide with the obstadlegmtuplicated. The area of the obstacle
is integrated by rows. For each row, the minimum x-coordinaus one is subtracted from the

maximum x-coordinate, but these operations never occunlsameously. Finally, the SEN mes-

172

sage logs the minimum and maximum x- and y-coordinates gtrexhich it travels to determine
the original shape’s bounding box.

While Figure 7-2 only shows a single module’s SEN messagmadules on the border gener-
ate messages. To elect a leader module from those surrguihéiobstacle, and to reduce the total
number of messages transferred, modules discard incontihyrBessages from modules with
lower unique IDs than their own. Because there is a singledsglD, all SEN messages except
one will be discarded before they return to their sender.mbdule whose SEN message returns is
the de facto leader. Figure 7-2 also omits the fact that allutes on the external perimeter of the
entire configuration of modules generate SEN messagese Tinessages are routed in an identical
manner around the exterior of the entire ensemble of modolgsvhen the message generated by
the module with the highest ID returns to its sender, theestasea will be negative, so the module

will know that it did not detect an obstacle.

7.1.3 Border Notification Algorithm

The border notification phase duplicates the border of tiggral shape in the nearby modules and
involves three types of messages. Duplication (DUP) messiaform each module on the border
of the original shape of their special status. Border (BORssages are sent by modules on the
perimeter of the original shape and inform each module ghanithe border of what will become
the duplicate shape of their status. Confirmation (CON) amss, in turn, are sent by recipients
of border (BOR) messages and allow the leader to determira wie border of the duplicate is
complete.

The border notification phase begins with the leader saldayethe shape sensing phase at-
tempting to use the bug algorithm to route a duplication (Dbessage to its missing neighbor
whose position is instead occupied by the obstacle to bedet. Like the sense (SEN) message
that is already sent, the duplication (DUP) message trdeepdrimeter of the obstacle convey-
ing two critical pieces of information to each module on thasder: the leader’s coordinates and
a duplication direction vector, (whose length is deterdibg the bounding box of the original

shape).

173

As the DUP message passes through the modules on the perohttte original shape, each
module attempts to route a border (BOR) message to the mmbhurigfied by the direction vector
added to the sender’s coordinates. After stimulating eaotiute on the perimeter of the original
shape to send a border (BOR) message, the DUP message dyeatuans to the leader where it

is discarded.

When the BOR messages reach their destinations, these esdoetome the border of the
duplicate shape. Because the BOR messages also carry tidknades of the leader module, each
BOR recipient sends a border confirmation (CON) messagetoatle leader carrying the length
of perimeter of the duplicate shape on which the module bierd8y comparing the cumulative
length of all received confirmation (CON) messages to thevkngerimeter of the original shape,
the leader determines when all modules on the border of thkcdte have been notified of their

role.

7.1.4 Shape Fill Algorithm

The shape fill phase notifies all modules inside the borddrefitiplicate shape that they form the
duplicate object and should remaining solidified when dleoimodules disassemble. The phase
begins when the leader has received confirmation messagegftery module on the border of the
duplicate shape. With the border of the duplicate comptee]eader sends a fill (FIL) message
that floods the entire network of modules. Each instanceeiftessage contains an “included” bit,
(initially cleared), that is toggled every time the messpggses through a module on the border of
duplicate shape. As a result, only modules surrounded bglupgcate border receive a fill (FIL)
message with the included bit set. These modules know thgtte included in the final structure
and do not break their shared bonds during the disassemasepEach module inside the border
of the duplicate shape sends another (area) CON messageléater. By comparing the number
of received area CON messages to the known area of the digpbdiogect, the leader can determine

when all modules that compose the duplicate object havevesta fill (FIL) message.

174

7.1.5 Self-Disassembly Algorithm

After the leader can verify that each module in the duplishi@pe knows that it should not disas-
semble, the leader broadcasts a disassembly (DIS) messHyedntire structure. This message
floods the network and the unincluded modules begin disasgegfrom their neighbors in an

orderly fashion (see Chapter 6), until only the duplicatgotremains.

7.2 Storage and Communication

The distributed shape duplication algorithm requires @dpnstant amount of storage per module
which is independent of the number of obstacles in the systesize of the object being duplicated.
During localization, a module only stores its position.He sensing phase, a module updates sense
(SEN) messages as they pass through the module, but no atforms stored. During border
notification, the new border modules that surround whatlv@tiome the duplicate shape must store
a list of their faces that border on the duplicate obstaaléetHis is constant in size and can never
exceed the dimensionality of the system. During the fill pgs; a module only needs to record a
constant amount of information: whether it is in the stroetand whether it has already sent a fill
(FIL) message to each neighbor (to minimize the number ofrRllssages transmitted). Finally,
during disassembly, modules do not need to store any infasmar hroughout the entire process,
the leader module only stores a constant amount of infoomathe perimeter and area of the shape
being duplicated. It never holds a complete descriptioh@fhape being duplicated. Additionally,
it only tracks the cumulative confirmed perimeter and areaveped by the confirmation (CON)
messages instead of keeping a list of exactly which modw#es transmitted CON messages. The
total storage per module is therefddél).

The number of messages exchanged also scales favorablywdrse case scenario occurs
when the area of the original object approaches the areaohitial block of material and when
the shape of that object approaches a 1-by-n rectangle.n®lotalization, each module may
exchange a constant number of messages with each of itshoeggtesulting inO(n) messages

exchanged. In the sensing phase, there are at @@gtmodules that each transmit sense (SEN)

175

messages. Each SEN message may tr@ye) hops before being discarded by a module with a
larger ID. Therefore, the total number of message3(is’). During duplication, the total number
of messages exchanged is a®@?) as the number of modules in the perimeter of the duplicate
may approachm, and each border (BOR) message may have have to travel adistéO(n) to
arrive at its destination. Normally, the fill process reqai®(n) messages, as each module just
forwards fill (FIL) messages to its immediate neighbors h#dre are many missing modules, the
number of messages may appro&m?). Finally, disassembly, because it is a flood fill process
like localization, only require®(n) messages. So, the total number of messages scaR®ias
implying that the per module number of messages exchangdedssasO(n). While a constant
scaling would be preferable, it is unrealistic to expectupladtate an arbitrarily large shape in a

distributed manner using only a fixed number of messages pdula.

7.3 Robustness

The system is robust to both missing communication linksrarssing modules. In what follows,
we assume that the physical state of the system is stati@ ttvecduplication process has begun,

neither communication links nor modules are removed fromduled to the system.

0 .
o «e functional
2 comm. link
[]
(] missing .
1 ®° comm. link
*
[
0
&

Figure 7-3: The missing link between modules (3,0), and)(®jll cause the module located at
(3,0) to send a sense (SEN) message to (3,1). Instead ofdirsgahis message, and aborting the
entire border sensing process, the module at (3,1), (ewmthit is the intended recipient), must
continue routing the message around the perimeter of thiadbsso that it eventually returns to
the leader.

First, consider the case of missing communication links.géneral, missing links are not
an issue so long as each module can communicate with at Ieash@ghbor. When routing

messages, the bug algorithm will treat missing links jugt bbstacles that must be avoided. The

176

one scenario in which a missing communication link can affiee system is shown in Figure 7-
3. In general, missing communication links are problematien they border on the object to
be duplicated because the sense (SEN) messages sent bythtules that share the missing
link will actually reach their destinations, (unlike mo<EI$ messages which are destined for a
location occupied by the obstacle being duplicated). Rieigito Figure 7-3, the SEN message
transmitted by the module at (3,0), that also happens tothaeighest ID, would be discarded by
the module at (3,1) instead of circumnavigating the obstdelirthermore, the module at (3,0) will
discard all other SEN message because they come from maoalititel®ower IDs. To alleviate this
problem, and make the system robust to missing communicktics anywhere, we have modified
the routing algorithm so that it never acknowledges when B SEduplication (DUP) message
reaches its destination. Instead, it will allow the messadeep traveling.

The duplication algorithm can also robustly handle missmaules. There are exactly four
distinct locations from which a module can be missing, antheésa shown in Figure 7-4. First,
when a module is missing from a location adjacent to the aigbbject being duplicated, (such
as at locatior{5,4) in Figure 7-4), missing module appears to be a part of ther@igbject, and

the duplicate will reflect this, as shown by the modulél&t 4) being included in the duplicate.

0 10 11 12 13

AR
(AEEEEEN

O kb N W A~ O

Figure 7-4: The duplication algorithm is robust enough todia modules missing from any poten-
tial location: (a) adjacent to the object being duplicai@j;in the interior of the duplicate shape;
(c) on the border of the duplicate shape; or (d) in any othsitjom.

Second, when a module is missing from another location ghalsb not the border or interior
of the duplicate shape, such as (6,0) in Figure 7-4, we needdaore that the algorithm does not
duplicate this apparent obstacle. We guarantee that tletdlign only duplicates the intended ob-
stacle by placing a threshold on the area of objects thabeitluplicated. Sense (SEN) messages

that return to their sender specifying an obstacle with aa amaller than this threshold are simply

177

discarded. This approach to ignoring small holes in thealngtacking of modules is reasonable
given, that to achieve acceptable resolution, most objeitte orders of magnitude larger than

the modules themselves.

Third, the duplication algorithm can gracefully handle mlas missing from the interior area
that will become the duplicate shape, such as the 9 moduidereel at(9,2) in Figure 7-4. In
general, the algorithm will make its best effort to duplectite original, but a large chunk of the
duplicate will be missing when the process completes. Quite shape fill phase, the modules
surrounding this gap in the structure will attempt to route(FIL) message to the 9 missing mod-
ules. As the system discovers that each of these messageédabvenable, it will attempt to route
disconfirm (DCON) messages to the missing modules’ conguigattions in the original obstacle.
For example, if the module &7, 2) in Figure 7-4 determines that a FIL message destine(B{@)
is undeliverable(7,2) will attempt to route a disconfirm (DCON) messagd 102). Because lo-
cation (1,2) is occupied by the passive obstacle being dafgld, this DCON message will never
be delivered. As the system discovers that each of these D@&x¥sages is undeliverable, it sends
an area confirmation (CON) message to the leader so thatatierlean account for the entire area
of the duplicate in order to trigger the self-disassemblgggh Continuing our example, if module
at (5,2) determines that the DCON message destined¥d2) cannot be delivered, the module
acts as a proxy for the module @, 2) and sends an area CON message to the lead8r@t Ad-
ditionally, (5,2) sends FIL messages to each(8f2)’s neighbor’s, including in particulat9, 2).
This last step is critical because there are no modules ewtjaga(9, 2) that could otherwise gen-
erate the necessary (though undeliverable) FIL messagdoMtithis last step, the leader would
never receive a CON message from a module proxying for theingisnodule at9,2). We use a
combination of highest ID and distance to discard many Fllssages so that we do not generate
an excess of area CON messages that would confuse the |éades particular example, there
will be four undeliverable FIL messages sent by proxy mosltdehe module &9, 2). The system
will discard all except the one sent by the module with thehbgj UID to ensure that only one

additional proxy CON message is generated.

Fourth, and finally, it is easy to handle modules missing ftbenborder of the duplicate shape

178

such as the module missing frofh2, 2) in Figure 7-4. During the border notification phase, the
border (BOR) message sent frdif 2) to (9,2) will be determined to be undeliverable by some
module. This module will in turn act as a proxy for the missingdule and send a border CON

message to the leader on behalf of the modu(@2t2). The leader can then account for all border
modules before initiating the shape fill phase.

During the shape fill phase, the algorithm handles missingdsanodules as it does missing
interior modules. An undeliverable FIL message destined18 2) generates a DCON message
that is sent to the missing module’s conjugatésa®). In contrast to the interior case, this DCON
message is actually delivered because locat®g) is on the border, not inside, of the original
shape. Because this message is delivered, we know that ttelenat(12,2) is itself a border

module. As a result, there is no need to send an area CON nestsstige sender.

7.4 Automated Duplication Placement

We created an algorithm which allows the system to automitidecide where within the initial
block of programmable matter to place the duplicate shapenlautomated duplication system
with millions of minuscule programmable matter modulesyould be difficult for the user to ex-
plicitly instruct the system where to place the duplicatar @utomated shape placement algorithm
eliminates the need for the user to specify where the duplislaould be placed. The automated
shape placement algorithm is executed by the obstaclerlbatigeen the sensing and border iden-
tification steps of the larger distributed duplication mse. In short, the algorithm attempts to find
the optimal placement of the duplicate object’'s boundingWwithin the rectangular bounding box
surrounding all modules in the system.

The placement algorithm represents the duplicate objebtawectangular bounding box. As
explained above, the shape sensing algorithm learns thasizposition of original shape’s bound-
ing box by routing a sense (SEN) message around the perimietee shape being duplicated.
When this sense message returns to the obstacle leadenfaircothe bounding box. Figure 7-5
shows the bounding box of the original shape being duplkicéebeled “O”) as a dashed line.

A bounding box of the same dimensions will also enclose ti@iclate shape that the system is

179

attempting to form. The system must decide where to placeltipiicate’s bounding box. Fig-
ure 7-5 shows four potential positions for the duplicatbéélad “A’ through “D”). The bounding

box associated with each potential position is drawn astedldne.

i

0 L C . I

Figure 7-5: The automated duplicate placement algorithemgits to place the duplicate shape as
far from the edges of the surrounding block of material asipds. To simplify the optimization,
the algorithm uses rectangular bounding boxes, (dashediaiteld lines), to represent both the
original shape and the collection of programmable mattedutes surrounding it. In this example,
the algorithm determines that placement B is ideal.

Modules on the perimeter of the collection of programmaldéten modules encasing the shape
being duplicated also route sense messages around theeparwhthe collection of modules. To
be consistent with terminology introduced in Chapter 8, ai this two-dimensional collection
of communicating modules slice One of the sense messages traversing the inside perinfieter o
the slice will eventually return to thslice leadey which is the module on the perimeter of the
collection of modules with the highest UID. Because it amnavigated the inside of the slice, (in
contrast to the outside of an obstacle), this sense wiltatdithat the sensed area is negative. The
slice leader uses this fact to determine that it is, in faot,slice not obstacle leader. Despite
returning with a negative area, the sense message thatsetuthe slice leader holds the position
and size of rectangular bounding box surrounding all malimé¢he system. This bounding box is

also represented by a dashed rectangle surrounding alllesidu~igure 7-5.

180

With both the obstacle’s and the slice’s bounding boxes knakae automated shape placement
algorithm attempts to find the optimal placement of the atdstmbounding box within the slice’s
bounding box. To do so, the algorithm instructs the sliceéedo broadcast the slice’s bounding
box to all modules in the system. Because the slice leades doeknow the coordinates of
the obstacle leader, this is the easiest way to guarante¢éhthabstacle leader learns the slice’s
bounding box. Once the obstacle leader receives the messaggining the slice’s bounding
box, it considers four distinct placements of the duplicdtape. In particular, the obstacle leader
considers placing the duplicate shape in the four cardin@ttions relative to the original shape’s
location. Starting to the north, and moving clockwise, thstacle leader considers placements A

through D in Figure 7-5.

Determining the optimal placement is a two step processst,Hor each cardinal direction,
the algorithm determines if the duplicate has any chancetofdibetween the original shape’s
bounding box and the slice’s bounding box. In the examplegire 7-5, the algorithm determines
that placements A, B, and C are all potential candidateslintireates placement D because the
duplicate’s bounding box is two modules wide, but the spateéen the left side of the original’'s

bounding box and the slice’s bounding box is only one modudw

Second, having eliminated cardinal directions that it ke@ull not fit the duplicate, the obsta-
cle leader attempts to find the optimal placement among thaireng directions. For each direc-
tion, the algorithm attempts to center the duplicate’s latogp box in both the x- and y-directions.
For example, when attempting to place the duplicate north@briginal, the algorithm attempts
to center the duplicate between the top edge of the origibalinding box and the top edge of the
slice’s bounding box. Simultaneously, the algorithm attésrio center the duplicate between the

left and right edges of the slice’s bounding box.

The algorithm scores each potential placement. The scdheisum of the extra space sur-
rounding the duplicate object. Returning to our exampleigufe 7-5, the score associated with
placement A is 11. This score comes from the 1 module of spameea4 modules to the right, 5
modules to the left, and 1 module below the duplicate. Theaeglacement A is only credited

with 1 module of space below is that the algorithm measured#iween the bottom of the du-

181

plicate and the top of the original shape. It assumes thatriigenal shape may extend farther to
the right that it actually does. The scores for all placemané shown in Table 7.1. Ultimately,

placement B is declared optimal with a score of 12.

Table 7.1: The automated placement algorithm chooses #idevposition with the highest score.

For reference, consult Figure 7-5.
[Cardinal Dir. | Placement] Viable | Score]|

North A Yes 11
East B Yes 12

South C Yes 9
West D No n/a

While the automated shape placement algorithm we descriesrsome attempt at optimality,
it is not ideal. While it just happens to be the case that prese B in Figure 7-5 results in
an accurate copy of the original being formed, all of the meslthat will be used to build that
duplicate could be removed without affecting the algorithdecision to place the duplicate at
position B. This shortcoming is due to the fact that the athor uses rectangular bounding boxes
to represent more complex shapes. A simple bounding boxotaapture the fact that there are
many modules missing from the upper right in Figure 7-5. Addally, the algorithm fails to
account for any modules missing from the interior of thedtrite. These non-idealities are the
result of a calculated decision. If we used more complex datatures to describe the shape
of the obstacle and slice, the communication, storage, ampuatation costs would rise. For an
arbitrarily complex slice, containing an arbitrarily colepobject to be duplicated, we would need
O(n) bits of storage to determine the optimal placement. We hhesen rectangular bounding
boxes because they only requitél) space, and they make the optimal placement calculations
easy and fast.

We have not extended the algorithm to scenarios in which ve& va magnify the original or
create multiple copies, but this task should not be diffidattr example, instead of using an exact
replica of the original’'s bounding box to place the dupkgate could use a modified bounding box
to describe the duplicate object(s). The algorithm coutdpsy magnify or replicate the original
shape’s bounding box to create the duplicate’s bounding boruld then use this larger bounding

box during the optimization process.

182

7.5 Multiple Duplicates and Magnification

We can extend the duplication algorithm to form multiple iesof the original shape or a magni-
fied duplicate that is an integer factM, larger than the original. The process of forming multiple
duplicates is accomplished by adding row and column coulasfi® each border (BOR) message
sent by the modules on the perimeter of the original shapes&how and column counts specify
the dimensions of the array of duplicates that will be formegit to the original object. When the
BOR messages reach their destinations, they both inforrdékgnation modules of their status
as border modules and forward themselves along to notifynéx set of border modules. So
long as the remaining column count of a BOR message is gréterone, the receiving module
decrements it and forwards the message in the x-directidkewlise, if the remaining row count
is greater than one, the receiving module decrements it aneafds the BOR message in the
y-direction. For a concrete example, see Figure 7-6.
0 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15

EEE . .

o | [| [:

NN |

Figure 7-6: When creating multiple copies of an originalghave arrange the copies in a array
whose dimensions (here 3-by-2) are appended to each drigander (BOR) message. As the

BOR messages move through the structure, the remainingngmgaow and column counts are

decremented as shown.

The process of magnifying the duplicate shape is likewisghk and is illustrated by Figure 7-
7. We append the magnification factor field, to each BOR message. In addition, the modules on
the perimeter of the original shape modify the destinatibthe BOR message they each send so
that the destination includes an additive factor that ddp@m the product d¥1 with the module’s

relative location within the bounding box of the originabgie. Each module that receives one of

183

these primary BOR messages become a local leader bf-ap-M group of modules. As shown
in Figure 7-7, each local leader, (in red), may or may notalttdorder on what will become the
duplicate shape. As a result, each local leader computeshwaithe modules within its M-by-M
domain, (outlined by a black border), should actually boodethe delicate shape. The local leader

then sends each of these true border modules a secondary BSdage.

0 1 2 3 4 5 [7 8 9 10 11 12 13 14 15

Figure 7-7: When creating a magnified version of the origéialpe, a set of primary border (BOR)
messages are sent by the modules on the perimeter of thearéfiape to local leaders (in red)
which may not lie on the border of the duplicate. These logatlers then send secondary BOR
messages to the modules within their domain (outlined ick)lghat do form the border of the
duplicate shape. Note: for clarity, not all messages aressho

When forming multiple duplicates or a magnified duplicatéssing modules are dealt with
as they are in the 1-to-1 duplication case. Also, the leaderwaits for a number of border and
area confirmation (CON) messages that is multiplied by eithe number of duplicates or the

magnification factor before beginning the shape fill and-deldssembly phases, respectively.

7.6 Experimental Results

We performed simulated and hardware-based experimemtsesults of which are shown in Ta-

ble 7.2. We had 20 Smart Pebble modules available to use in dinglicating small shapes. We

184

used the Sandbox simulator to perform large experimentswbiald otherwise require more hard-
ware modules than we currently have available. The simutatio be told to randomly break a set
percentage of inter-module communication links or randaminove a set percentage of modules,
as indicated by the Broken Links and Missing Modules column&ble 7.2. Exactly which links
and modules are removed changes with each trial. The Diség®&egun column in Table 7.2
indicates in what percentage of trials the self-disassgplithse was started by the leader module,
indicating that the leader module at least received all &ioethd area CON messages. In cases
where self-disassembly did start, the Correct Bonds colunglicates what percentage of all inter-
module bonds were in the correct state after the self-d#salsly finished. It excludes trials in

which the leader failed to initiate the self-disassembly.

Table 7.2: Experiments show the duplication algorithmskivay correctly in both simulation and
hardware.

Shape Sim/| Broken Missing Mag. | Array | No. Avg. Disassembly] Correct
HW | Links[%)] | Modules[%] | Factor | Size | Trials | Time]s| Begun[%] | Bonds[%)]
Fig. 7-8(a) 15 29.3 80.0 89.8
Fig. 7-8(b 16 38.0 1000 94.0
Fio. 7-88 HW | Unknown 0.0 x| I g 471 1000 875
Fig. 7-8(d) 15 50.6 93.3 90.7
Fig. 7-4 | Sim 5.0 0.0 Ix IxT 25 | Unknown 1000 1000
Fig. 7-6 | Sim 10.0 5.0 Ix 3x2 25 | Unknown 1000 1000
Fig. 7-7 | Sim 10.0 5.0 3X Ix1 25 Unknown 1000 1000
100 5.0 Ix Ix1 25 | Unknown 1000 1000
Fig. 7-8(e)| Sim 5.0 25 1x 2x2 25 Unknown 1000 1000
5.0 2.5 2X 1x1 25 | Unknown 1000 1000

N
N
IO e
L] LR
(|
L] LR
N ([
N
DDD%DDDQ

Figure 7-8: We verified the duplication algorithm using aietyr of shapes in both hardware,
subfigures (a-d), and simulation, subfigure (e).

185

In general, the distributed algorithm performed well. Indvaare trails, there were four in-
stances where the leader module did not initiate the sefssiembly phase. It is difficult to isolate
the cause of these failures, but we suspect that some coroatiani links may have lost connec-
tivity after the duplication process began. Additionaltyhardware, the self-disassembly phase
only resulted in 9M% of bonds being successfully broken. While this is a prolieat deserves
further investigation, it is does not reflect on the core & tluplication algorithm’s reliability.

In simulation, despite challenging environments with 10B&@mmunication links removed and
5.0% of modules removed, the algorithm performed flawlesslgnmtreating a 1-to-1 duplicates,

magnified duplicates, or multiple duplicates.

While the algorithm must handle a small number of brokendiwkien using the Smart Pebble
hardware, we wanted to ensure that the algorithm could eardéven higher percentage of broken
links and missing modules. We used the simulator to re@itta¢ humanoid shown in Figure 7-
8(e). Table 7.2 shows that the algorithm performed flawjeksi missing link rates as high as
20%. Higher broken link rates typically result in a configioa that does not include a closed

communication path around the original shape.

We also used the simulator to measure the running time andhcwrneation cost of the dupli-
cation process. Our experiments were focused on duplg#tim simple 7-module wrench shown
in Figure 7-9. We configured the simulator to count the nundfenessages exchanged by each
module during each phase of the duplication process. Wauaksibthe simulator to record the time
required to complete each phase. To measure how the humbezssfages scaled with the size
of the wrench, we ran 8 different experiments as we scaledigeof the wrench by all integer
factors between 1 and 8, inclusive. In each experiment, & &&-module border between the
original wrench and the duplicate and between the extenoddr and the two wrenches. As an

example, Figure 7-10 illustrates the 5x-scaled origindligsmsuccessfully created duplicate.

We ran a total of 117 trials, and at least 9 trials for each ef@magnification factors. The
running times of the duplication process, as well as thogaoh major sub-algorithm, are shown
in Figure 7-11. The figure plots the running time against thmber of active modules in the initial

block of material surrounding the wrench. The eight tick ksaalong the x-axis correspond to the

186

lll [T HH
ERRfEaEnn
INNEGECENENG
INDDNCSNNDNNnNER

Figure 7-9: To characterize how the duplication algorittuales, we duplicated scaled versions of
the wrench on the left using the Sandbox simulator. The cetagdlduplicate is shown in the right.

= IOEEESS00 HEEEDS IEEEDNE

Hi 1 K T T T.T1 1 [I

] I T =1
L = | TOICEy = = =1 1=
A TEEE SEpsefecsnEcchep iun

] [1 [l -"'r [} | § f

u NEEDD § -'—i:n:'w. L e
n nE i EEhebubbbhan

- 1‘1"" -‘ : -r'. ' p » .I
2 RaiiialirbetEiotine

i [: | Il 'e‘|1_+: 1 L

= - N e e -

il i 1 1 4 i L

. IR EDD AR nEE L :
—1i]- i T-1-1 1T I 1 = e T -1=
= i = T = T Ela LD o

i | Tl o i I |

= if- =J - 3 0 ":-“q:':!- = EEn

EESENDEED poEaE 1= LA 00

[B | [| . 1] L] [

Figure 7-10: We duplicated up to 8x-scaled versions of trecb@module wrench. Here we
illustrate a 5x-scaled original and its duplicate. In abes, we left a 2-module border between the
wrenches and the external perimeter of the initial blockrob& Pebbles.

187

eight different magnification factors. The running time isakly quadratic in the number of active
modules. This makes sense given that the total number ofapes®xchanged @(n?) and each
message will requir®(1) time to exchange. While many messages are exchanged itehatas

not enough to produce an overall linear running time.

Time to Duplicate 1-8x Scaled Wrenches
600 T T T T T T

—>— Localization

Sensing

a
o
o

Border Notification
—S— Shape Fill

400 Disassembly
—+— Total

300 -

N
o
o

Time To Complete Duplication [s]
)
o

= i
89 188 321 488 689 924 1193 1496
Active Modules in System

Figure 7-11: The time to complete the duplication procesgescn a roughly quadratic fashion.
This makes intuitive sense given that the total number ofsagss exchanged scalesQ@?).
While some messages can be exchanged in parallel, othetbeeschanged sequentially giving
rise to the quadratic scaling of time. Each of the eight tigcks on the x-axis corresponds to one
of the eight scaling factors.

We also logged the number of messages exchanged duringlthéseals. The results, plotted

in Figure 7-12, show that the number of messages exchangegractical example scales better
than the expecte®(n?) result. When duplicating the 8x-scaled wrench, the 1496@atodules
exchanged a total of 90,000 messages. On average, thayi8@niessages per module. Figure 7-
13 plots the imperfect, but roughly linear relationshipvetn the average number of messages
per module and the total number of active modules in the systde same figure also illustrates
that the maximum number of messages exchanged by any modile system scales in a linear
fashion. It is worth noting that the average number of messaychange by any given module
is roughly an order of magnitude lower than the maximum nunalbenessages exchanged by a

module. Figure 7-14 better illustrates the distributiortted number of messages exchanged by

188

each module in the system. In particular, the figure showsttigavast majority of modules in a
system exchange a number of messages quite close to thgaweraber of messages exchanged,
i.e. there is little variation in the number of messages argled. In summary, these results
confirm the duplication algorithm’s theoretical communica cost ofO(n) messages exchanged

per module and the worst ca€¥n?) total messages exchanged.

« 1g7otal # Msgs. to Duplicate 1-8x Scaled Wrenches
10 T T T T T T T

9 —>— Localization
Sensing
Border Notification

—S— Shape Fill
Disassembly

6 —+— Total

Total # Messages Exchanged

oL—& s i 1 L I
89 188 321 488 689 924 1193 1496
Active Modules in System

Figure 7-12: The number of inter-module messages exchgngedommunication cost) scales as
O(n?) in the worst case. Here we attempt to illustrate the relatignby plotting the total number
of inter-module messages against the number of active rasdedjuired to duplicate scaled version
of the wrench shown in Figure 7-9. In practice, the relatpmsppears more linear than quadratic.
Each of the eight tick marks on the x-axis corresponding ®afrthe eight magnification factors.
Note, we do not include the localization (LOC) messagesatsuity sent by each module while
waiting for a position (POS) from its neighbor.

189

Msgs. Exchanged per Module to Duplicate 1-8x Scaled Wrenches
70 T T T T T T T 800

—6— Average
—4&— Maximum

60 1600

50 1400

Average # Msgs Exchanged per Module
Maximum # Msgs Exchanged per Module

! ! ! ! ! !

. 0
80 188 321 488 689 924 1193 1496
Active Modules in System

Figure 7-13: The average number of messages exchanged dalenscales roughly linearly with
the number of active modules in the system. The maximum nuwib@&essages exchanged by
any module in the system scales in a highly linear fashiorteNe different scales used for the
average and maximum number of messages. The average ig aimoder of magnitude lower
than the maximum. Each of the eight tick marks on the x-axisesponding to one of the eight
magnification factors.

190

400

350

300

250

200

150

100

Frequency (Number of Modules)

al
o

Figure 7-14: This plot illustrates the distribution of thember of messages exchanged by all
modules in the systems duplicating the 8 scaled versionsedbasic 7-module wrench. It shows
that the variance from module to module is low. Most modubahange a number of messages
close to the average number. There are only a few modulegxichainge a significantly higher

number of messages.

Histogram of # Msgs. Per Module

8x Magnification
7x Magnification

6x Magnification |7

5x Magnification
4x Magnification
3x Magnification
2x Magnification

1x Magnification | |

40 60
Number of Messages Exchanged per Module

80

100

191

120

140

160 180

200

192

Chapter 8

Three-Dimensional Duplication

In this chapter, we extend the two-dimensional duplicatigorithm to duplication of three-
dimensional objects that may be convex or concave (e.g. upercFigure 8-1). Much like the
2D duplication algorithm, the solution relies on local Sagf the boundary of the desired object
and coordinated inference and planning to create a sollttaehe major addition to the 2D al-
gorithm is the slicing of the 3D collection of modules int@apés that operate semi-independently.
As before, no module ever stores the complete goal shapdeaiabal state of the system; the
memory required by each module@1). Furthermore, the number of inter-module messages
exchanged i©(n) per module, whera is the number of modules in the system. We have im-
plemented and evaluated this algorithm in simulation foriremments containing thousands of

modules.

The two-dimensional duplication process functions aofedl (see Chapter 7 for details). For
each location occupied by the obstacle, the algorithm iflemta conjugatemodule some dis-
tance away in a specified offset direction that will remaihdsiied when all other modules self-
disassemble. Because the object being duplicated is indrhat composed of active modules,
sensing and modeling its geometric shape is challengirgur€&i8-2 outlines our solution, which
senses and identifies the border of the void in the moduleddtiat is occupied by the object. The
algorithm identifies the surface of the object by messagsipasand marks all the lattice modules

on the object’s perimeter. A shifted replica of this perieras created at a different location in the

193

Figure 8-1: The distributed duplication algorithm is caleadf duplicating arbitrary 3D objects like

the coffee mug (left) using a collection of programmableteranodules. The modules envelop
and sense the shape of the original object before formingpade (right) from spare modules.
Any extra modules (white) are then brushed aside to reveatdmpleted object.

lattice some automatically determined offset distanceydwan the original. Then, the algorithm
uses a flood fill process to notify all the modules within thisface that they are a part of the du-
plicate object. The result is the desired one-to-one cpargence between voids in the lattice and
conjugate duplicate modules. This approach works for @iy complex surfaces, both convex

and concave.

J\J\J\J\J\J\J\J\JL Moriginal
 HEEESEEE
B orar
|

:‘.m. M duplicate
HEEEEEEEEED.

M duplicate
e>conjugate border notification message

border

HEE

O B N W A oo

Figure 8-2: The distributed duplication algorithm worksdsnsing the border of the shape to be
duplicated. Once the border is identified, each module obdnéer notifies a conjugate duplicate
border module that is offset a fixed distance in a given diwact With all the modules on the
duplicate border aware of their status, the algorithm restiéill modules inside the duplicate border
that they are part of the duplicate shape.

194

8.1 Challenges of Three-Dimensional Duplication

Despite its relatively simple high-level description,thare many challenges when implementing
the duplication algorithm in three dimensions. The modmiast (1) all agree on the offset distance
between the original and the duplicate; (2) posses a wayffereltiate between bordering on the
obstacle to be duplicated and the very exterior of the irbtazck of material; (3) synchronize when
each module’s contribution to the duplicate border is catgko as to not start disassembling
prematurely; (4) be able to do all of the above while using @stant amount of memory and a

number of messages that scales favorably.

A naive solution that considers the border as a set of indalidhodules instead of a closed
surface will fail for a number of reasons when duplicatingngtex objects. First, if all border
modules do not agree on the offset distance by which to $teft tonjugate, the duplicate object
may appear skewed, even worse, completely incoherentn8eddhe system does not duplicate
the correct set of border modules, concavities in the oaigmill be filled in the duplicate. Third,
if some group of conjugate border modules decides to sthnigfitheir interior before the entire
surface of the duplicate has been constructed, the fill gessay spill out of the duplicate. Every
module in the system may then decide that it is part of theidatgl. Finally, if some module
initiates the disassembly process before all modules inltipdicate have received a fill message,

some modules will disassemble instead of remaining patie@titiplicate shape.

The first challenge that the algorithm must overcome is tbetfeat there is no efficient way to
sense and identify the border of the passive shape directlyée dimensions. In particular, we
need a message passing algorithm that can "wrap” aroundhaneby sense, the entire 3D shape.
To accomplish this, we decompose the duplication procésid subproblems using a layer-by-
layer approach. The initial block of material is cut intoividual planes, and duplication proceeds
semi-independently in each plane. In each plane, the baddatification problem uses the bug
algorithm [66]. Any module on the border (as determined byissmg neighbor), attempts to
route a message to the unoccupied lattice location. Theages&ts as the bug, and the void as the
obstacle to be avoided. In its futile attempt to reach itsidagon, the message will circumnavigate

the entire obstacle before returning to its sender. In itionnavigation, the message learns about

195

the shape of the obstacle. The challenge for 3D duplicasaio isynchronize all these planar
processes. Concavities in the object to be duplicated rezeflut processing. Consider duplicating
a coffee mug. If the mug is sitting upright, and if the plamation is confined to horizontal plane,
some planes will contain two disjoint sets of lattice modul€here will be one group of modules
surrounding the outside of the mug and a second, isolatedsséé the mug. We call each of these

groups aslice. Our algorithm can handle an arbitrary number of disjoiites.

8.1.1 Three-Dimensional Routing Algorithm

The system also faces the problem of routing messages froduleson the inside surface of
the mug to modules outside the mug. These messages mustitrdkieee dimensions, so the
bug algorithm that we use for intra-slice routing will notagantee their delivery. Our approach
leverages developments [65] in geographic routing to endblrouting while keeping the amount
of routing information stored in the messages and nodedaoatasnd quite small.

The three-dimensional routing algorithm developed in [6pgrates on a tree composed of
convex hulls. Each Smart Pebble module stores its own cameixvhich holds the coordinates
of other modules in the system that can be reached by descetidi tree to one of the module’s
children. When there is no direct path available betweerreetddimensional routing message’s
source and destination, the routing messages begins evdeathe tree of convex hulls. Because all
modules are included in the tree, the message will eventredkch its destination. The convex hull
information stored at each node helps to speed up the prbgesgminating the need to traverse
branches of the tree which the system knows do not contaiméssage’s destination.

To further simplify the algorithm, we use rectangular boixestead of arbitrary convex hulls.
Each of our rectangular convex hulls can therefore be repted by a set of six points: the mini-
mum and maximum X-, y- and z-coordinates of the box. Our apgr@nsures that it is simple to
check whether a point lies inside of a convex hull, and it &ssures that it is simple to find the
union of two convex hulls. In simplifying the representatiof the convex hull, we do not affect
the correctness of the routing algorithm. Compared to thienah convex hulls that tightly bound

the set of points they contain, our rectangular hulls inelsdme number of additional points. Con-

196

sequently, a three-dimensional routing message may hdveved a longer path as it traverses the
rectangular convex hulls. The modules that the messagés widl be a superset of the modules

that it would have visited using the optimal convex hulls.

8.2 Three-Dimensional Duplication Algorithm

As illustrated in Figure 8-3, the key to the complete 3D degdiion algorithm is to virtually
cut the initial block of programmable matter into individydanes and then coordinate the two-
dimensional duplication processes occurring in each plaseshown in thez = 2 plane, a single

cut plane may contain multiple distinct groups of nodes. Aleeach of these groupsséice

Figure 8-3: Here a 12x6x4 block of material encasing a shadled bowl (transparent) is sliced
along the x-y plane. We reference all coordinates to the notee lower-front-left corner which
we assume is located at positi 0,0). Each distinct group of modules within a plane (there are
two in thez= 2 plane) is termed asiceand has a slice leader (blue) that is always on the slice’s
exterior border. Additionally, each slice has an inteceslparent link module (green) that can be
located arbitrarily. The arrows point from inter-slice @at link modules to their parent slices.
Finally, each obstacle has an associated obstacle leadr (r

At a high level, each slice executes the basic 2D duplicgirmcess semi-independently, but
the slices must synchronize and exchange information fodtlplication to succeed. As a result,
there are unique steps in the 3D algorithm that have no cqparten the 2D case. The duplication

process is initiated by sending one module on the exteridgh@fraw block of material a start

197

message specifying (1) the slice plane; (2) the coordina¢ettbn in which the duplicate should
be formed; and (3) which of the module’s faces is an extedoe fof the initial block. This module
then assumes its position (6,0,0) and that it has a standard orientation. Once begun, the 3D

duplication algorithm has 10 steps:

1) Encapsulation and Localizatior-As in the 2D case, the modules in the system solidify
around the shape to be duplicated and exchange messagasitthieir positions and orientations

relative to(0,0,0) within the lattice.

2) Hull Tree Construction—The three-dimensional routing algorithm uses a tree ofe@on
hulls to route messages when there is no direct path avaitailveen the message’s source and
destination [65]. The tree is structured identically to plosver supply dependency tree explained
in Chapter 6. The structure of the tree is formed during tbeall@ation process. The first neighbor-
ing module to send a position (POS) message to an unlocatipelile becomes the unlocalized
module’s parent in the tree. Hence, the structure of thasreeilt from the root down to the leaves.
The rectangular convex hulls associated with each nodeoasdraicted in the opposite order: from
leaves up to root. When a module determines that it is a le@ledfee (because it has no children),
it sends its coordinates, (in the form of a 1-by-1-by-1 regtdar convex hull), to its parent. Each
parent waits for all of its children to send their convex bulDnce the parent has received them,
it finds the union of its children’s convex hulls and add itsnogoordinates. The parent module
then forwards this new convex hull, (which contains its climates and the coordinates of all of
its children), up the tree to its own parent module. Evetyutile convex hulls will propagate up
to the root of the tree so that the root module’s convex huitams the coordinates of all modules

in the system.

3) Shape SensingWithin each slice, shape sensing operates nearly iddgticdhree dimen-
sions as it does in two. The only difference is that, in additio electing an obstacle leader, the
algorithm also elects a leader for the entire slice. Thidlustrated in Figure 8-4. Just as each
obstacle leader is the module on the border of the obstattetlae largest UID, the slice leader is
the module on the border of the slice with the largest UlDcé&Sleader modules are differentiated

from obstacle leaders because the sense (SEN) messageduatravigates the exterior border

198

of the slice will return to the slice leader indicating a niagaarea. The magnitude of this number

is the actual area of the slice, including the space conslopeay obstacles.

yX—>O 1 2 3 4 5 6 7 8 9 10 11
IS AT AP ST A ST AUE A JIE 3 JiE 3 QI 3 QI 3 Gib) ¢}

SDL_’”””‘U G

DC small slice area: -4 C

¥ small slice/perimeter: 8
2% large slice area: -72
DC D C Dlarge slice|perimeter: 36

DC N obstacle area: 16 C

obstacle perimeter; 16
0 Dbuu ng
ﬁmmmmmmmt“lmmmf‘

o/ glice leader / SENse message
o/~obstacle leader / SENse message

Figure 8-4: Examining the = 2 plane from Figure 8-3, we see that each of the two slicextiete
its exterior border by allowing a sense (SEN) message (ie)dhom the border module with the
highest UID (the slice leader) to trace the slice’s extebprvirtually colliding with all of the
missing modules. The larger outer slice contains an olestaclthe obstacle leader also transmits
a SEN message (in red) that makes a complete circuit arowndhstacle. For eachx (+X)
collision, the messages increment (decrement), theirareat field by their current-coordinate
(x-coordinate+1). The messages increment their perimeter field after altigioo.

4) Roll Call-The new slice leader broadcasts its position to all modulgke slice. Each
module then replies with a roll call (RLC) message indiagtivhether it has zero, one, or two out-
of-slice-plane neighbors. Obstacle leaders supplemeint tturned roll call messages with the
size of the obstacle they represent. By counting the reigrroll call messages, the slice leader
can positively account for the entire area of the slice. #ddally, the slice leader learns how
many out-of-slice-plane neighbors the slice has.

5) Slice Tree Constructionr-The algorithm constructs a tree in which each node is a.slice
Eventually, this tree will be used to synchronize all slidéach slices knows that it has accounted
for all possible child slices when each of its out-of-slgane neighbors reports that it has a dedi-
cated parent. This is detailed below.

6) Offset Distance Consensuslhe slices need to agree on where the duplicate shape should
be placed. To do so, each slice transmits the bounding boawswuding all obstacles in the slice to

its parent slice. Then union of all these bounding boxesayates up the slice tree to the root slice.

199

>0 1 2 3 4 5 6 7 8 9 10 11

N W ON
—
=

[y
N

(2 '
0 St

=~inter-slice parent link module / parent pointer
¥ inter-slice parent tree root

Figure 8-5: To aid inter-slice communication, the dupli@atalgorithm forms a tree on the slices
in the initial structure. Here, we see the modules of FiguB@Bojected onto the x-z plane and
each of the six slices outlined in a different color. The dgjieen modules are inter-slice parent
link modules, and they serve as connection points from & stidts parent. Every module in a
slice learns the location of its inter-slice parent link mte] so a message can be forwarded from
any location, (in this case from the slice leader of the sislade in thez = 2 plane), to the root
inter-slice parent link module.

The slice tree root module can then determine the globa¢bifscessary to prevent a duplicate
object in which the slices are skewed relative to one anoiter root slice broadcasts this offset so

that it can be incorporated into the border (BOR) message#s®éhe conjugate border modules.

7) Exterior Face Determination-The 3D duplication algorithm must duplicate both the con-
vex and concave portion of the original shape. For exampleigure 8-3, the interior border of the
cylinder must be duplicated along with the exterior bordezlse the duplicate object will become
a cube instead of another cylinder. This means that in addit duplicating the border of any
obstacle contained within a slice, slices must also dudit@eir exterior borders. The algorithm
makes one exception to this rule: it does not duplicate aiog’slexterior border if that border
is also an exterior border of the entire block of material. &plain the differentiation process

below.

8) Border Notification—As in the 2D case, all border modules, (except modules oextegior
of the entire block of material), send border (BOR) messagteir conjugate modules that will
become the border of the duplicate shape. The conjugateboradules reply with confirmation
(CON) messages that are counted by the either the obstaclerler slice leader (depending on
the type of border being duplicated—exterior or interi®vhen the obstacle and slice leaders have

received CON messages from each duplicate border modulehfich they are responsible, they

200

send a secondary CON messages to their respective irgempslient link modules. Once the inter-
slice parent link module has received secondary CON mesdageach obstacle, the slice as a
whole, and any child slices, it forwards the CON messagetodatent slice. Eventually, secondary
CON messages will propagate to the root of the slice treettadoot module will know that the
border notification process is complete.

9) Shape Fil-The shape fill procedure in 3D is similar to the process in Pk fill (FIL)
messages still carry thaside bit that is toggled every time the message crosses the diglic
border. The messages also nedivaflag that is cleared when a message crosses a slice border.
Until the live flag is again set—-when the message crosses a border moauilesitteflag is ig-
nored. The reason for thwe flag is that an included module in one slice has no way to determ
whether a module in neighboring slice is also included. tgigpsome caveats addressed below in
Section 8.6, the shape fill phase terminates just like thddryanotification phase. Each included
module sends a CON message to the appropriate obstacle [€hda the obstacle leader sends a
secondary CON message to its inter-slice parent link modLie inter-slice parent link module
waits for this and secondary CON messages from all chilésliefore propagating the secondary
CON up the slice tree.

10) Self-DisassemblyOnce the slice tree root receives CON messages from all sliges, it
floods the network with a disassembly (DIS) messages caadlimgodule except those forming

the duplicate shape to disassemble. O

8.3 Message Routing Algorithm

The algorithm uses a combination of 2D (bug) and 3D routicynéjues. For the shape sensing
and exterior notification, the algorithm uses the bug rapélyorithm which restricts messages to
a specified plane. This limitation is actually an advantageabse the messages tightly contour
around all obstacles learning about their shape in the psocé/hen sending border (BOR) and
confirmation (CON) messages, the system must use a 3D ralgogthm. To see why, consider

Figure 8-3: some of the CON messages returning to eitheredetiders of the slice planes inside

the cylinder have no 2D route available. In particular, a sage from(8,2,2) cannot use a 2D

201

routing algorithm to reack2, 3,2).

We chose a 3D routing algorithm [65] based on convex hulktbteEause it was designed for 3D
environments, requires only a small amount of fixed storagach node, and is easy to implement.
In short, messages act greedily and move in a direction tbtks@ir destination whenever possible.
When blocked, messages switch to traversing the convextiea only descending into nodes
whose convex hulls contain the destination. We further fgnfhe algorithm described in [65]
by, among other things, distilling each convex hull intomle rectangular bounding box. As a
result, each node only needs to store two coordinates pler (@ith a maximum of six children)

to maintain the hull tree. Despite this simplification thgaalthm works well for our purposes.

8.4 Synchronization Algorithm

To enable synchronization before the border notificatibaps fill, and disassembly steps, the 3D
duplication algorithm needs a way to ensure that all sli@<ompleted the active step. To do
so, the system must determine the total number of slice$ lsolds a tree of slices, as shown by
Figure 8-5. Note that this slice tree is separate from th@&ohull tree used for 3D routing.

The slice tree is built from the root downward. The modulgioilly given the start signal by
the user informs its slice’s leader that the leader showdd bé the root of the slice tree. (This is
why, in Figure 8-3 the module &5, 5,0) is both blue and green.) Once the slice leader is told that
it is also the root of the slice tree, it broadcasts its larato all other modules in the slice. As
a result, all modules in the slice learn the location of, wikatterm, theirinter-slice parent link
Once a module knows the location of its inter-slice parew,lit is allowed to service incoming
requests from neighboring slices looking for a parent indliee tree.

In the neighboring slices that are not yet incorporated thédree, all modules send parent re-
guest messages to their out-of-slice-plane neighborstbaly, some out-of-slice-plane module,
(which already knows the position of its inter-slice paramt module), will respond. The module
in the unincorporated slice to which it responds becomdsstita’s inter-slice parent link. That is,
the module is the location of the link to the parent slice.sTjmocess repeats until all slices have

selected an inter-slice parent link module.

202

When a slice is incorporated into the tree, the modules irslice inform all of their out-of-
slice-plane neighbors that they are now a part of the treealse each slice knows, (thanks to the
roll call step), how many out-of-slice-plane neighborsasheach slice can determine when all of
its out-of-slice-plane neighbors have been incorporatamthe tree. Therefore, we can guarantee

that all slices are incorporated into the tree.

8.5 Exterior Face Identification Algorithm

When duplicating even a simple 3D shape like a coffee mugaldp@ithm must account for both
the concave and convex parts of the object’s border. In tee o&ihollow cylinder, the concave,
or interior part of the cylinder’s face will correspond teetéxterior border of multiple slices. The
algorithm must duplicate the exterior border of these sllmg not duplicate the exterior borders of
slices that also serve as the exterior border of the entirekladf material. Figure 8-4 provides an
example: the algorithm should duplicate the exterior boodéhe inner 2-by-2 slice, but it should
not duplicate the exterior border of the 12-by-6 slice that@unds the smaller slice. We term the
larger slice arexterior slice

Our approach to differentiating exterior borders reliest@nbug routing algorithm. By default,
all exterior border modules assume that they should be chatpli. The module &0, 0,0) initiates
this process because it was told, (as part of the start comyynahich of its faces was an exterior
face of the entire structure. This module then uses the yayitim in an attempt to route two
exterior (EXT) messages in the direction of the specifieérmott face. The first EXT message is
routed in the slice plane, and the second is routed orthdgoria Because the bug algorithm is
fundamentally a 2D algorithm, these messages will remaiingir given planes. Like sense (SEN)
messages, these EXT messages will circumnavigate theatterder. As they pass through the
modules on their routes, they notify those module that tleyare on the exterior of the whole
block (and should not duplicate their border). Additiogathey prompt those modules to emit
their own EXT messages. Specifically, a message arrivingaslice plane will prompt an out-of-
slice-plane message, and vice versa.

When an in-slice-plane EXT message completes its circoitradt an exterior slice, it sends

203

a CON message to the root inter-slice parent module. Thisaao determine when the entire
process is complete because it knows, as a result of thetsdeeconstruction step, how many

exterior slices comprise the entire structure.

8.6 Area Accounting During Shape Fill

One patrticular challenge of 3D duplication is that two sioecupying the same plane do not know
of each other’s existence. Consider again Figure 8-4. [guha shape fill step, the obstacle leader
in the outer slice, expects to receive sixteen CON messitggses not know that the inner-most
four of those lattice positions are not part of the dupligaltstacle. Our solution, illustrated in
Figure 8-6, is to send a fake CON message from a conjugateboradule corresponding to the

leader of the interior slice.

O b N W A 0O

—CONmsg. [l BORmsg. rcvd. >border pointer ¢ obstacle leader
BORmsg. [MFIL msg.rcvd. —-actual border *slice leader

Figure 8-6: The obstacle leader of the exterior slice, eigteaeceive sixteen confirmation (CON)
messages after the shape fill process beings. Although ttaade leader does not know it, the
obstacle is hollow. To ensure that the obstacle leaderrstigives all CON messages, the slice
leader of the inner slice sends a special border (BOR) medsais conjugate instructing it to
confirm four additional units of area despite the fact that¢bnjugate module is not included in
the duplicate structure.

First, whenever an exterior border of a slice is duplicatieel slice leader, when sending a BOR
message to its conjugate, includes its slice’s area. Tlsisas/n in Figure 8-6. Second, during the
shape fill process, the slice leader’s conjugate border te@knds a CON message to the outer
slice’s obstacle leader even though it is not part of the idafg# shape. This CON message is
special because it accounts for four units of area, not justlike other messages. As a result of

this two-step process, the outer slice’s obstacle leadmnants for all sixteen units of area.

204

8.7 Storage and Message Scaling

The algorithm requires only a constant amount of storagermetule. No part of the algorithm
requires a module to amass any data that correlates withuimder of modules in the system.
The key to this attribute is the one-to-one correspondert@den modules on the border of the
original shape and modules on the border of the duplicateth€&umore, when collecting CON
messages, modules do not track the origins of the messaggshe total number received. The
convex hull tree and the slice tree also require a fixed amofispace. A module only needs
to store the rectangular hulls of at most six neighbors. @hiklice in the slice tree may have
an unlimited number of children, it does not track them. Nges only flow up the tree, so a
slice only needs to know the location of its inter-slice paré&inally, the routing algorithms forgo
routing tables and other storage intensive strategiesonr & storing a constant amount of routing
information in the messages themselves.

The total number of messages exchanged between modulessystem scales &n?) and is
dominated by the exterior notification, shape sensing anddomotification steps. The worst case
message scaling occurs when the initial block of mateript@gches a 1-by-line of modules.

In this case, there will b©(n) modules sending EXT messages and each message will have to
circumnavigateO(n) other modules before returning to its sender. The samengcafiplies to

the shape sensing phase if the object being duplicated pfgoaches a long rod(n) modules

will each transmit a SEN message and each message may@@vediops before being discarded.
During border notification, there will again t&n) modules sending messages that each have to

travelO(n) hops before reaching their conjugates.

8.8 Experimental Results

We performed 818 experiments duplicating rods, cubes,requaes, and the mug shown in Fig-
ure 8-1. The results are listed in Table 8.1. The overallssgEcate was 98%. The twelve failures
were traced to routing deadlocks arising from congestiammake points in the inter-module com-

munication network. These were not failures of the higlelelplication algorithm. Congestion

205

arises because the modules have only a single transmityegaad payload buffer associated with
each face. Each of these buffers can only hold a single messagthermore, a single incom-
ing message can often prompt a module to send multiple aujgoiessages. Two neighboring
modules can create deadlock when each is parsing a messagéhie other that would send a
message back to its neighbor. If each module’s transmiebidfalready full, the parsing function
has nowhere to queue the outgoing message, so it cannot {h@gecoming message, (that is
currently being parsed), from the receive buffer. Withtheceive buffers full, the modules cannot
transmit messages to each other, so the transmit buffer@mesacupied. While this situation is

not common, the simulations show it is possible, and futuwekwghould aim find a solution.

Table 8.1: Experiments show the three-dimensional dujpdicaalgorithm working correctly in a
variety of test cases.

Original Encasing # # Avg. Msgs.
Shape Shape Trials | Successes Trial
1x1x1 Rod 5x3x3 Block 75 75 3586
2x1x1 Rod 7x3x3 Block 60 60 5520
3x1x1 Rod 9x3x3 Block 52 52 7573
4x1x1 Rod 11x3x3 Block| 54 54 9926
5x1x1 Rod 13x3x3 Block| 59 59 12203
6x1x1 Rod | 15x3x3 Block| 57 57 15149
7x1x1 Rod | 17x3x3 Block| 51 51 18079
2x2x2 Cube | 7x4x4 Block 55 55 10321
3x3x3 Cube | 9x5x5 Block 61 61 22034
4x4x4 Cube | 11x6x6 Block| 54 54 41155
5x5x5 Cube | 13x7x7 Block| 52 51 70521
6x6x6 Cube | 15x8x8 Block| 60 60 111850
7X7X7 Cube | 17x9x9 Block| 6 6 173060
4x4x4 Tube | 11x6x6 Block| 44 44 43157
5x5x5 Tube | 13x7x7 Block| 22 21 78583
6x6x6 Tube | 15x8x8 Block| 21 18 125980
7X7X7 Tube | 17x9x9 Block| 20 20 193950
Figure 8-1 Mug| 17x7x7 Block| 20 20 113690

Figure 8-7 shows a breakdown of the total number of interuethessages passed as a func-
tion of the number of active modules in the system. The seeangalong the x-axis correspond

to cubes with side lengths 1—7. We observed identical sgal@havior when duplicating rods and

206

tubes. The quadratic that fits the total message count data58n° + 1086n. Even though the
n? term will dominate past a few thousand modules, the averageear of messages per module

still scales approximately &3(n).

Messages Exchanged to Duplicate an n—by—-n—by-n Cube
5
x 10

—— Localization/Hull Tree
—=—Sensing
—>— Ext. Notification
—— Border Notification
—&— Shape Fill
Disassembly
| ——Total

2

15}

0.57

Total Messsage Count
H

M@

400 600 800 1000 1200
Active Modules in System

0 200

Figure 8-7: When duplicating cubes with edges lengths from @ seven, the total number of
messages exchanged by all modules scales quadratically.

To further reinforce that the algorithms scale favorabiguFe 8-8, shows a histogram of the
number of messages sent by each module when duplicatingx® 8géiare tube with a wall thick-
ness of one module. The results show that the vast majorityasfules send between 100—200

messages.

207

Messages Sent/Received per Module, Averaged Over 18 Trial

60

a1
o

N
o

N
o

=
o

Frequency (Number of Modules)
w
o

0 100 200 300 400 500 600

Number of Messages

Figure 8-8: When duplicating an object, the variance frondues to module in the number of

messages sent is small.

Here, the average is number of reegsagmodule when duplicating a

6Xx6x6 square tube is 150.1 and the standard deviation is 55.3

208

Chapter 9

Conclusion

Over fifty years ago, L. S. Penrose dreamt of the following:

Suppose we have a sack or some other container full of ursiténg one another
as the sack is shaken and distorted in all manner of ways. it@ gpthis, the units
remain detached from one another. Then we put into the saaarpnged connected

structure made from units exactly similar to those alreadiiiwthe sack.

Now we agitate the sack again in the same random and vigoransen with the
seed structure jostling about among the neutral units. filme we find that repli-

cas of the seed structure have been assembled from the fpmeetral or "lifeless”

material [86].

This thesis has made significant progress towards Pencheas of an artificial self-duplicating
system. There is still much work to be done, but we have cidzdedware and algorithms that en-
able duplication of 2D objects with our Smart Pebbles prognable matter system. Even more,
the objects being duplicated need not be composed of urettighl to those used to produce
the duplicate. The resulting duplicates can be magnifiedesopf the original objects that are

inherently imbued with sensing, computation, and actunediailities absent from the original.

The document was dedicated to exploring the thesis statemen

209

Digital fabrication can be accomplished with smart partisicapable of

self-disassembly.

Chapter 3 presented the Smart Pebble hardware: 12mm getaiparticles that are capable
of self-disassembly. Chapter 5 then demonstrated how wieimgnted reliable nearest neighbor
communication between neighboring modules. Low level comigation forms the foundation of
the high level shape formation algorithms that we explongdhapters 6—8. Specifically, Chapter 7
presents an algorithm for distributed shape duplicatiahfzardware experiments demonstrating
the algorithm executing on the Smart Pebble modules. Whdeetare always areas for improve-
ment, we must conclude that it is indeed possible to achiayigatifabrication using the Smart
Pebbles programmable matter system. The remainder oftihater first summarizes our contri-

butions and then explores limitations of the system alorty atieas for future improvement.

9.1 Contributions

This thesis makes a number of hardware contributions toramgable matter and modular robotic

systems:

e Small electropermanent magnets that can be used for meehdmanding, inter-module
communication, and module-to-module power transfer. @h@&dectropermanent magnets
are simply to control and have zero static power consumpfiteted pairs of magnets can

support over 3N.

e A set of 50 cubic modules, each 12mm per side, capable of hgnalith their neighbors
to form arbitrary structures in 2D. The modules are amongsthallest autonomous robots

capable of actuation, sensing, and computation.

e Several test fixtures, including an inclined vibration &glthat allow the user to power and

communicate with Smart Pebbles system.

To support the Smart Pebble hardware, this thesis conestséveral pieces of key software:

210

e Low-level communication code which makes the inherentgille inter-module communi-
cation process more robust. This code also monitors conuation link status, and enables

the system to route messages around communication linkarthaynamically broken.

e A simulator that allows us to develop and easily debug heyell shape formation algo-
rithms. The simulator executes the same code that runs thet Bebbles. Each Pebble runs
as an independent process, and because the processes ¢oatenwith UDP packets, they

can be distributed across multiple physical machines.
Finally, this thesis also makes a number of algorithmic kbuations:

e A distributed duplication algorithm that allows the systeproduce many, possibly mag-
nified, copies of an original passive object that is subntnmgea collection of Smart Pebble
modules. The algorithm is robust to broken communicatioksiand modules missing from

the square lattice.

e A 3D extension to the 2D shape duplication algorithm. The Bjor@thm enables the dupli-

cation of complex shapes by partitioning the initial confagion of modules in slices.

e Algorithms that enable the organized disassembly of a god@mart Pebble modules. Be-
cause the modules rely on their neighbors for power, thesgegably process must carefully
determine the order in which mechanical bonds between hergig modules are broken.
Our algorithm ensures that a module does not lose powerdéfbas broken all necessary

bonds with its neighbors.

9.2 Limitations

There are obvious limitations to the current Smart Pebbistem. For example, the Smart Pebbles
are larger than desired; the modules are only capable ofiigr@D structures; the inter-module
bonding strength is not yet sufficient to allow the strucsurebe used as tools. In addition to these
obvious areas for improvement, there are several moressliitations to the system that should

be addressed in future iterations.

211

The hardware is still fragile. Despite having manufactgfifty Smart Pebble modules, typi-
cally only half are functional at any given time. We made maagle-offs in the design process,
and to minimize the volume of the modules, we pushed thediofithe components and thereby
sacrificed robustness. For example, each module runs fraddW @&@pply, but we use a linear reg-
ulator rated for 20mA to supply 18mA at 5V to the processordiEsipate the heat generated by
the regulator, we keep a fan pointed at the modules durirexpkriments. As another example of
a design trade-off, the PFETs which drive the EP magnetstan@3QF reservoir capacitors are
all operating at their rated voltages (20V) with no marginhé&i the PFETSs fail, the 20V rail can
be shorted to ground. To prevent catastrophic damage, weda20hm series resistor that acts

like a fuse. It is the most common component that we replace.

Inter-module communication is not error free. Bit errore acceptable so long as they are
corrected, or at least detected, but the system cannot sla@ypmplish this. While not common,
bit errors in the messages do propagate to the high-levetitigns. The current 7-bit CRC check-
sum is not sufficient to protect messages that may be sevandréd bits long. The decision to
use a simple 7-bit checksum was another design trade-afjrex$ to save code space, (which is
completely occupied by the 2D duplication algorithm), aaduce the amount of processor time

devoted to transmitting and receiving messages.

The routing algorithms are subject to deadlock. With jusi tmodules, it is easy to envision
a scenario where each module’s receive and payload buffefsla Suppose that the message in
each payload buffer instructs the module to send a routirgsage to its neighbor. Each modules
will attempt to send this routing message, but until it iscassfully delivered, the payload buffer
will not be emptied. Of course, the message will not be dedgebecause the receive buffers
into which the messages should be transferred are alredldy=futhermore, the receive buffers
cannot be emptied because each contains a routing message pdyload must be moved to the
payload buffers but, as already stated, those are occupiectih As a result, the two modules
have entered a deadlock situation. In practice, we do naleadlock often, but we have identified

it as the cause of failure in a small number of 3D duplicatigpeziments.
The 3D shape duplication algorithm is not as robust to defecthe original block of material

212

as the 2D algorithm. In particular, 3D duplication may féithere are modules missing from the
lattice in the vicinity of the duplicate shape. In partiauifithe missing modules should be part of
the duplicate or its border, some slice leader will neveeirgxthe correct number of confirmation
messages, so the duplication process will hang.

The 3D duplication process does not yet support magnificaiiche production of multiple
copies of the original shape. Magnification and multipleiesgare difficult because they break
the isolation of each layer. A single original border modulest sender border identification mes-
sages to several conjugate border modules in multiplessliééhile this is theoretically possible,
it requires a great deal of bookkeeping to ensure that akkssry messages are received and
confirmed.

The Sandbox simulator is not as scalable as we had hoped. OtG&2 quad-core Intel
Core2 processor with 4GB of RAM, the simulator begins toggte as the number of modules
approaches 1000. We have run a few simulations with over fridfifules, but they run too slowly
to be practical. The simulator is not scalable because eacegs wakes from sleep on a regular
basis to check for incoming messages, regardless of whathe¥ssage is actually available. A
better architecture would keep each module in its sleep siatil a message arrives. The number
of IP port numbers also limits the simulator to several tlemasmodules. There are approximately
6,0000 ports available on most systems. If each simulateduteaises 6 to communicate with
its neighbors and another to communicate with the GUI, weé véllimited to simulating 8,000

modules.

9.3 Lessons Learned

We learned several important lessons while working to agvtie Smart Pebbles system:

e With respect to hardware, we discovered that small manufiact defects can have a notice-
able effect on the reliability on the self-assembly proceBse mechanical variation from
module to module is not large, but it can be large enough tegmtean ensemble of modules

from self-assembling into a close-packed lattice. Theeesaveral mechanical aspects that

213

were important. In addition to overall module dimensioimg orthogonality of neighbors
connectors was also important. While the brass frames dradmch the flexible circuit
boards were wrapped ensured that the module faces whetg agaogonal, ensuring that
the EP magnets were mounted parallel to the faces in whighwikee embedded was more
difficult. As a result, one pole often protruded farther frdme exterior of the module than
the other. This effect was exacerbated by mechanical @isthe EP magnets themselves.

Often, the two pole pieces were not perfectly co-planar oalje.

Completely autonomous systems are particularly proneiioréa When manually assem-
bling the Smart Pebbles modules into an initial block of matenodule-by-module, it is
easy to identify and replace a misshapen module with a mgeppate module. In com-
parison, when the system is self-assembling, this is implessBefore starting the self-
assembly process, we had to ensure that the modules beohgvaseas uniform as possible.
Except when using only a few modules, this was difficult. Werhed that for a large system

to be robust, it must be able to tolerate significant varmetim module size and shape.

For a system to be as robust as possible to variations in reaizeg, we now believe that
we must abandon the assumption that the modules are all@dasthsize and will pack into
a uniform lattice. Abandoning this assumption becomeshalrmore important when the
dimensions of the object around which the modules are paafedot integer multiples of
the basic module dimensions. When self-assembling the lesduound a passive shape,
we had to ensure that the granularity of the passive shapsghetithe module size. If we did
not, we found that the modules would rather align with therutauy of the passive shape
than the grid positions that would allow them to bond withtheighbors. If we are to allow
the modules to form non-uniform 3D lattice, the modules waithost certainly need to be
spherical. No other shape will all the modules to pack asiyaabund an arbitrarily shape

object.

While developing the high-level algorithms, we learned reyucial it is to have access to

high-quality debugging tools. Typically, it is enough tobdg an embedded system with

214

a few LEDs, a serial connection, or at the most, a JTAG bus. |&\Nixe were able to use
Atmel’s proprietary debugWIRE interface to step, linedlme, through the code running on
a single module, this proved insufficient when diagnosirgdpfems related to the interaction

of multiple modules.

While we were constrained to debugging only the root moduéecame to realize that even
the ability to debug any arbitrary module would be ineffeetiWe learned that we needed
the ability to debug multiple modules simultaneously. Tésuitt of this realization was the
simulator that we developed. The simulator allows us to nesthie internal state of multiple
modules virtually simultaneously. Additionally, we cowtbp and step through the code
of multiple modules. Finally, by recording all inter-modslmessages exchanged during
an experiment, we were able to reconstruct the actions ohitjie-level shape formation

algorithms.

In the process of performing large-scale experiments, ezl how important it is for a
distributed system to be robust to multiple points of faluWe were shocked how many dif-
ferent types of errors arose when performing hardware @xpets. Despite the duplication
algorithms working predictably in simulation, the hardevavas always problematic. We
saw modules behave in completely unexpected ways that ¢ineestate of our debugging

tools, we could not always explain.

Future iterations of the system should have more programaggoavailable. The fact that
the modules experienced un-handled errors was not unepelrt order to fit the core of

the duplication algorithm into the limited memory of the StriRebble hardware, we had to
eliminate a significant amount of error handling from theeedd/hen a module encountered
an unknown error, it ideally entered a safe state in whichpttoeessor prevented harm to
the EP magnet drivers and used the LED to flash a rudimentesy @vde to the user. In

other cases, the modules processors reset themselves geanu tbhebehave as if they had
just joined the existing configuration of modules. Unfodtely, there was not enough code

space available to handle these conditions.

215

e Mundane errors can lead to serious faults. While the dupdicaalgorithm is capable of
handling broken communication links and missing modulkestruggles to handle commu-
nication links that break or form after the duplication pges has begun. Even the basic bug
routing algorithm struggles to handle cases in which a moduhdded or removed from the
system. For example, if a routing message departs fromatd jgath while avoiding an ob-
stacle but the module at which it deviated from the idea patbmoved from the system, the
message may never realize that it cannot reach its destinathis is because the message
will never again pass through the departure point, so it casay with certainty that is has

completely circumnavigated the obstacle it was avoiding.

e Robust error handling is more difficult and time consumingnbplement than the basic
application code. Communication links between neighlgpnmodules that form after all the
modules have been localized can be problematic. For exampl@ken communicate link
between neighboring modules on the perimeter of the shapg Haplicated will cause the
duplication algorithm to believe that the shape’s perimisténvo units larger than it actually
is. This becomes a problem when the broken communicatiéndihealed before each of
the modules on the perimeter of the original sends a bordssage to its conjugate module.
In such a scenario, the leader module will wait indefinitedy fwo border confirmation
messages that never arrive. Consequently, the self-disdobg process will never complete.
Future improvements to the shape formation algorithms rhasable to deal with these
relatively common dynamic changes to the configuration efgtructure. In light of all
these challenges, development of any practical systemmegllire just as much, if not more,

code devoted to error handling than code for the shape fawmalgorithm.

9.4 Near-Term Improvements

The most obvious area for future development is improvednammable matter hardware. Hard-
ware improvements can be divided into both short-term and-term goals. In the immediate

future, we should develop a three-dimensional version ®Smart Pebbles. The first generation

216

of three-dimensional Pebbles may be slightly larger tharcthrrent two-dimensional Pebbles, but
the three-dimensional modules could serve as a testbed mh whexperiment with new fabri-
cation techniques that could be miniaturized later. A nevgie@ of hardware would allow us to

improve the robustness of the modules using what we havedddrom the current generation.

There are many extensions to the current shape duplicatgionithms that should be imple-
mented. In particular, many of the features of the two-disn@mal algorithm have not yet been
ported to three-dimensions. The three-dimensional algoris not yet capable of shape magni-
fication or creating multiple copies of a single original gaa The three-dimensional algorithm
is also not as robust as the two-dimensional algorithm. e sensitive to missing modules.

Finally, the three-dimensional algorithm does not suppaotbmated shape placement.

We should also aim to better automate the placement of thiecdtgpshape within the block of
host material. Currently the system makes a simplisticgitéo optimize the placement of a single
unmagnified instance of the duplicate. In the future, théesgshould attempt to both translate
and rotate multiple, magnified duplicates to achieve thet eifisient packing of duplicate shapes.
Additionally, the three-dimensional system should attetapptimize the plane used to slice the

initial block of material. Currently, it must be specified the user.

We would also like to imbue the system with the ability to ¢ceaaore exotic shapes. Currently,
the system can sense and duplicate three-dimensionalibesaccessed by through small open-
ings, but actually removing the unused modules from suchtiieavs difficult to impossible. The
module will get jammed as the try to pass through the cavayis. We would like an extension
to the duplication algorithm that allows us to form the daate in two or more pieces that are ini-
tially un-bonded with each another. Once the pieces, orasgiemblies have been removed from
the larger collection of modules, we would like the user t@bke to easily bond them together to
form the complete object. This approach would allow for treation of cavities, and it would also

allow the user to partition a large object into pieces thatraore easily fabricated.

We would like to improve the two-dimensional routing algbm. When the duplication al-
gorithm is routing confirmation messages to the obstaclteleanany of the messages follow the

exact same path. This is especially true when the messagestouring around some obstacle.

217

Each message tightly hugs the perimeter of the obstacle.résudt, some modules experience a
much higher communication load than others. Future it@natof the system should use a more
intelligent approach. Messages should attempt to takenalte paths even if those paths are longer.
This will decrease congestion and improve the system’singntime.

Finally, we would like to investigate ways to improve the siator. As already mentioned, it is
useful for simulating collections of, at most, a few hundmeatules. If we abandon the simulator’s
ability to accurately mimic the low-level communicationtbe Smart Pebbles, we should be able
to construct a simulator that is capable of handling a fewmsland modules. Past that, we will need

to explore alternatives to using UDP packets for inter-ni@dommunication.

9.5 Looking to the Future

There are several high-level areas for potential resedrahhave been exposed by this thesis.
First, we need to look past systems that rely on the modubdspidick into regular lattices. Per-
fectly regular packings are practically impossible to aghiunless the modules themselves are all
perfectly identical. Adding a passive object to the colmtiof modules only further complicates
the packing process and makes perfect packing more unlik&hjile developing hardware that
support irregular packings will be challenging, the preatity and robustness that it ultimately
brings will be notable. In developing hardware modules gwgport irregular packing we may
need to move away from using discrete connectors. When pgckindomly, a module a may
contact its neighbors almost anywhere over its surface. réviee a module comes into contact
with its neighbors, it must be able to form mechanical, data, power connections. As a result, a
few localized connectors per module may not be sufficienafsystem to form a dense lattice of
inter-connected modules.

If we do achieve a hardware module that can effectively patkirregular lattices while bond-
ing and communicating with its neighbors, there are a waoétlgorithmic challenges that arise.
Without a global coordinate system, simply localizing dlklme modules in the structure will be
challenging. Our current approach to shape duplicatiolalgb require refinement. In an irregular

packing, there will no longer be a exact one to one correspracelbetween modules on the border

218

of the original and modules on the border of the duplicate.WwNebe forced to approximate the
shape of the original object being duplicated. How we wowdhds in an optimal manner is not
yet clear.

There are other potential areas for algorithmic improverasmwell. This thesis has presented
algorithms that requir®(1) space an®(n) messages per module, but we must do better. Practical
programmable matter systems will be composed of milliomaadules. We cannot reasonably ex-
pect each module to exchange a million messages with ithberg. We need to pursue algorithms
that exchange a number of messages per module that is ®a-liWhile potentially impossible in
worst-case scenarios, much work remains to improve typifiaiency.

Perhaps the least explored area for additional researcwisiie functionality of programmable
materials can be specified in a structured and provablyecbfashion. Once we have created an
object from a collection of smart particles, we should erplbow we can continue to leverage
the intelligence, communication, sensing, and actuatidlitias that are already incorporated into
each module. If we treat programmable matter systems as stathines whose inherent abil-
ities are only used to from passive shapes, we are missingubepotential of programmable
matter systems. Programmable matter systems hold greattiadtbecause they can be dynamic,
changing both their software and hardware to adapt to tteatasand.

Personal computers are a ubiquitous example of universgbating machines. They are capa-
ble of running any number of different pieces of softward,thay cannot change their basic phys-
ical form or interact with the tangible world in an unencumdzkway. In contrast, programmable
matter systems approach universal machines in both anithlignoe and physical sense. They
can run arbitrary pieces of software, and they can assuméyreaitrary shapes and physical
properties. While many software programming languagest etkiere are no equivalents for pro-
grammable matter systems. As computer science enablegstesrsatic design and analysis of the
software systems that have revolutionized high technoiogdlie last sixty years, we need a new

science, the science of programmable matter, that willlugamize the next one-hundred.

219

220

Appendix A

Schematics

221

zeve-037
Sapn#

TN 01 aso[d dasy

ang e “bunnos eses o) punoJb oy 138ULOS LOd ‘98d ‘@Ed
5 nro oNg
< NU-dBZEYIIILY NI N ang
[l uT
o —| W/ezing/ cad Va3 g
2zv S ONIV/JB00/2ZINIDd/50d aNo 32
8eY A T1/8830/TZLNIJd/S0d aNg T +dl
2 BL/IX/PZINIDA/b0d e (2
NT TINI/8200/6TINIOd/€0d e
B8TLINIJd/@LNI/Z0d ok
£ NEZE] srinndd/oxL/Tad 5% deeamy
S| STINIIG/X/@0d 3 | S f\\\\\\\\\\\\\\M|Zﬂmauaq
81NIJd/@309/83d 0t 1<}
9T Z9S0L/ZWIX/ZINIOd/Z8d BLNIDd/T90/TId a9] ZNzaazuin s
TIS0L/TYLX/21NIJd/28d PTLNIJd/Z20¥/Z23d Nv N vT0
2dL GLNIJd/X3S/58d TTLNIJd/£306/E3d . | [
51 d 3SN3STNOLWOD U0
SdL TSon 0SIU/+LNLId/+8d ZTINIIA/M0S/5205/52d | ——JSRIS—NORRDT dn-[{nd feusAUT 5,00 8sn 5 1E) wo d/zeTeHad
Gdl SeTH 1S0L/8Z00/€INIJd/E6d €TINIIA/105/3008/60d | RNOTIT A B s s G50
g-NOWHOT 8730/55/Z INIJd/Z8d +TLINIJd/13538/93d 3 13539 @HQP
N-NOREOT 9100/ TINIOd/Tad e 10
"1 Td21/0%710/01NI2d/28d 9908 f3 SIS
ES
aNg 2309 [zz— d NUWWOO — =3
s 2an 5 -
el PN 8T) T dezeTenad
A v 820
A+ S+
o
&
2905982000057L8
1a
aNg aNs Dz@ﬂ
T NI
TNt = = = =
(03LUNOLNYINAT-608ELT i
I I
o e N9 5 2-90050S | | v —v o s
sa L34 T TG T v
.- ON/£QY NOHS w & = &
1 W Al U TW
1no NI
z EIA S Za | TN
<n 44 WNS
G+ zd
ON-T-£95T-G6+ Nd_AaBI0 aNg N9 ana oNg
“aqn> oprsur Sge
sabriq 11 asnesaq unoys jou deg
‘345H S309 ded nez NBBT
ZNZ@ezyHa]
ZNZOCYWa4 ZNZeeZYlNa4 ZNZeZYWa4 aeg
EES| 820 EES|
ZNZ@RZYHa 4 ZNZ@@ZuHa 4 ZNZ@0ZYHa 4 ZNZ@@ZyHa 4
960 520 950 9e0
WD wn @D wn
2y S RE G
of EES
dszeTenad E&) dszeTynad S3
880 2 a0 2
] 5 2D o 5 -
~R S =R ~3 S =8
B N ® N
N N

IC

The Robot Pebbles Schemati

Figure A-1

222

gsnaNg 8SNaNg 8SNaN9 gsnaNg 8SNaN9 8snaNg
T T T T THzEZLA T T
Sen > bsnao anoy
=R5 W\ £snad s
I €7 ¢sned N9 =
zz sn83d aNg BT
WW—; esngo Ng —
<L [P al
= 2 I R - M I J 5, ntee
o =]) [2) 44 =0 <\
o 51 &0 0350 [—7 S sk =
= 8 Er 1080 7z TN Dgsnane mw-asn
VA 77 i €104 EVEM- AL LOHOS ¢ sL “ r—
53 3 - ==
$TOTIHYL NS STLTLI T NI[E f +0 i 1383 1y ano
sn e Eal= axy - %
(=} (=) oxL dossn oT = +0
o 2 WOBSN 551> -0
01000 < W snan
A 330 LNOENE [s NG2'h I
166 L L €n £Td
oz 52 23
=R TR
® 07-00¥XS080IN
Al
gSTNG
gsNaNg gSNaNg gsnang
@b\ W nTe) nT'@ nZy
9 -
& ° o7 ST +
S I 3
0
d3M0d TUNIILX3
eTr
€090-031
0w gz T asnaNg zr
0T 2d
8r g s
v €
00T 8d z T
G5 W T oY ast
1
<><><><>
asnaNg EC VWY
AB0'T GY
El S
193713S ¢ST v €
z T 2€d4D1-2€d10d/ZE€d40.1-88Y93LY BSNAND
& as1 — TNIY/EZLNIId/20d
7
o7 @N18/9YP30/ZZ LNIJd/90d ONg Tz
g g 7 T1/8620/TZINIId/50d aNg |
41 43 ——{ BL/%IX/BZINIOd/+0d aNe
€3 8J < TINI/8200/6TINIId/60d
8TLNIJd/@LNI/Z0d
SIS UXT W £TLNIJd/0XL1/T0d
\|H|I STINIId/OXd/00d B
oxg @ BLNIJd/@30Y/83d ‘MW 8SMAN9
ZHWZ'6T mgrm 20S01/2WIX/ZINIOd/28d BINIId/TI0Y/T3d (5
28 TOSOL/TWIX/SINIOd/98d @TINIId/2305/20d [— o\ o
N TI=anT T A SINIOd/XS/58d TTINIID/EQOY/Edd 5% AN
VW 0SIW/+ NIOd/+8d ZTINIOA/W0S/$006/40d |52 m
v 1S0W/¥ZI0/EINIJd/E8d ETLINIDd/135/6G308/G3d 8z =
8790/55/2 INI9d/28d $TINIO/1353/90d |5
4SNANg W YT00/TINIOd/ T8d =
s == 1dJI/0X%713/@81NIJd/@8d 9309 st Sp
100'T b x4 W
Jossasoud (oddns oy agn> butwweaboug uado hirew.ion €090-031 oot €4 230
J0ss3204d 2GN> LI UDTIIEDTUNWWOD IdS :PasO[d A{[eu.oN €0 o1 Z3 20N 20NY g7
il
b2z oTY g

Fixture Saliem

ing

The Robot Pebbles Test/Programmi

Figure A-2

223

224

Bibliography

[1]

Leonard Adleman, Qi Cheng, Ashish Goel, and Ming-Deh ikyiaRunning time and pro-
gram size for self-assembled squares33nd Annual ACM Symposium on Theory of Com-
puting, pages 740-748, 2001.

[2] Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kaad &obert T. Schweller. Com-

[3]

[4]

[5]

[6]

[7]

plexities for generalized models of self-assembly.15th Annual ACM-SIAM Symposium
on Discrete Algorithmgpages 880—-889, 2004.

Byoung Kwon An. Em-cube: Cube-shaped, self-reconfigl&r@aobots sliding on structure
surfaces. INEEE International Conference on Robotics and Automati@R@), pages
3149-3155, May 2008.

Byoungkwon An and Daniela Rus. Programming and corntrglself-folding sheets. In
IEEE International Conference on Robotics and Automati@RA), page In Press, May
2012.

Michael Ashley-Rollman, Padmanabhan Pillai, and Mi#h&oodstein. Simulating multi-
million-robot ensembles. IICRA page in press, May 2011.

Batteryspace. 1-2 c rate polymer li-ion cells / packstp://www.batteryspace.com/
1-2cratepolymerli-ioncellspacks.aspx, 2012.

L. Berry, L. Renaud, P. Kleinmann, P. Morin, M. Armeneamd H. Saint-Jalmes. Im-
plantable solenoidal microcoil for nuclear magnetic reswe spectroscopy. IREE-EMBS
Special Topic Conference on Microtechnologies in Medieind Biology pages 171-174,
October 2000.

[8] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. MalpNe Napp, and T. Nguyen. Pro-

[9]

grammable parts: A demonstration of the grammatical ambroa self-organization. In
IEEE/RSJ International Conference on Intelligent Robois 8ystems (IRO3)ages 3684—
3691, August 2005.

Scott T. Brittain, Yuki Sugimura, Oliver J. A. Schuell&nthony G. Evans, and George M.
Whitesides. Fabrication and mechanical performance of sostale space-filling truss
system.Journal of Microelectromechanical Systeri®(1):113-120, March 2001.

225

[10] William Butera. Text display and graphics control onarggable computer. I@€onference
on Self-Adaptive and Self-Organizing Systems (SAS@ps 45-54, July 2007.

[11] A. Castano and P. Will. Mechanical design of a module rieconfigurable robots. In
IEEE/RSJ International Conference on Intelligent Robaois 8ystems (IROJ)ages 2203—
2209, 2000.

[12] Andres Castano, Alberto Behar, and Peter Will. The oamodules for reconfigurable
robots.|IEEE Transactions on Mechatronicg(4):403-409, December 2002.

[13] M.L. Chan, P. Fonda, C. Reyes, J. Xie, H. Najar, L. Lin,Yamazaki, and D.A. Horsley.
Micromachining 3d hemispherical features in silicon vikratemd. INIEEE International
Conference on Micro Electro Mechanical Systems (MEM&yes 289292, Feburary 2012.

[14] lan Chen, Bruce MacDonald, Burkhard Wunsche, GeofB&ygs, and Tetsuo Kotoku. A
simulation environment for openrtm-aist. $1 Internationa) pages 113-117, 2009.

[15] Chih-Jung Chiang and Gregory S. Chirikjian. Modulabebmotion planning using simi-
larity metrics.Autonomous Robqt40:91-106, 2001.

[16] Gregory Chirikjian, Amit Pamecha, and Imme Ebert-Ufph&valuating efficiency of self-
reconfiguration in a class of modular robot¥urnal of Robotic System$3(5):317-388,
1996.

[17] Gregory S. Chirikjian. Kinematics of a metamorphic otib system. IHEEE International
Conference on Robotics and Automation (ICR¥8ges 449-455, May 1994.

[18] David Christensen, David Brandt, Kasper Stoy, andiagh Schultz. A unified simulator
for self-reconfigurable robots. IROS pages 870-876, September 2008.

[19] David Johan Christensen and Kasper Stoy. Select a meth#e to shape-change the atron
self-reconfigurable robot. IHEEEE International Conference on Robotics and Automation
pages 2532-2538, May 2006.

[20] Klaus Cicha, Zhiquan Li, Klaus Stadlmann, Aleksandrs@wikov, Ruth Markut-Kohl,
Robert Liska, and Jurgen Stampfl. Evaluation of 3d strusttabricated with two-photon-
photopolymerization by using ftir spectroscopgpurnal of Applied Physic$110):064911,
September 2011.

[21] Adam Cohen, Gang Zhang, Fan-Gang Tseng, Uri Frodisidddansfeld, and Peter Will.
Efab: Rapid, low-cost desktop micromachining of high aspatto true 3-d mems. IfEEE
International Conference on Micro Electro Mechanical &yss (MEMS)pages 244-251,
1999.

[22] Goldstein Seth Copen and Todd C. Mowry. Claytronics: iAstance of programmable
matter. InWild and Crazy Ideas Session of ASPL.B8ston, MA, October 2004.

226

[23] Bruce Donald, Christopher G. Levey, Craig D. McGrayidPaprotny, and Daniela Rus.
An untethered, electrostatic, globally controllable memisro-robot. Journal of Micro-
electromechanical Systenis(1):1-15, February 2006.

[24] Bruce R. Donald, Christopher G. Levey, and Igor Paprofianar microassembly by paral-
lel actuator of mems microrobotdournal of Microelectromechanical Systerig(4):789—
808, August 2008.

[25] Dprsim.http://www.pittsburgh.intel-research.net/dprweb/.

[26] A. C. Fischer, N. Roxhed, T. Haraldsson, N. Heinig, GarBine, and F. Niklaus. Fabrication
of high aspect ratio through silicon vias (tsvs) by magnasisembly of nickel wires. In
IEEE International Conference on Micro Electro Mechani&listems (MEMSpages 37—
40, January 2011.

[27] Robert Fitch and Zack Butler. Million module march: $%d#de locomotion for large
self-reconfiguring robots.International Journal of Robotics Reseayc®i7(3-4):331-343,
March/April 2008.

[28] Toshio Fukuda and Seiya Nakagawa. Dynamically recandigle robotic system. IiEEE
International Conference on Robotics and Automatjmages 1581-1586, April 1988.

[29] Stanislav Funiak, Padmanabhan Pillai, Michael P. &giRollman, Jason D. Campbell, and
Seth Copen Goldstein. Distributed localization of modutdrot ensemblesinternational
Journal of Robotics Research8(8):946—-961, August 2009.

[30] David H. Garcias, Joe Tien, Tricia L. Breen, Carey Hsu &eorge M. Whitesides. Form-
ing electrical networks in three dimensions by self-asdgmBcience 289(5482):1170—-
1172, August 18 2000.

[31] B. Gerkey, R. Vaughan, and A. Howard. The player/staggept: Tools for multi-robot and
distributed sensor systems. Iltl. Conf. on Advanced Roboticiune 2003.

[32] Kyle Gilpin. Distributed algorithms for self dissasbiy for modular robots. M.Eng. and
S.B. Thesis, June 2006.

[33] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbl@se centimeter robotic modules
for programmable matter through self-disassemblylHBE International Conference on
Robotics and Automation (ICRAYlay 2010.

[34] Kyle Gilpin, Keith Kotay, Daneila Rus, and luliu Vassleu. Miche: Modular shape forma-
tion by self-disassemblynternational Journal of Robotics Reseay@v:345-372, 2008.

[35] Kyle Gilpin, Keith Kotay, and Daniela Rus. Miche: Modulshape formation by self-
disassembly. IREEE International Conference on Robotics and Automati@RA), pages
2241-2247, April 2007.

227

[36] Kyle Gilpin and Daniela Rus. Modular robot systems: reelf-assembly to self-
disassemblylEEE Robotics and Automation Magazjig'(3):38-53, September 2010.

[37] Seth Goldstein, Jason Campbell, and Todd Mowry. Pragrable mattedrEEE Computer
38(6):99-101, 2005.

[38] Saul Griffith, Dan Goldwater, and Joseph M. Jacobsonbd®os: Self-replication from
random partsNature 437:636, September 28 2005.

[39] Gregory J. Hamlin and A. C. Sanderson. Tetrobot: A madai/stem for hyper-redundant
parallel robotics. INEEE International Conference on Robotics and Automati@iRA),
pages 154-159, May 1995.

[40] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, EO02maine, D. Rus, and R. J.
Wood. Programmable matter by foldingroceedings of the National Academy of Sciences
107(28):12441-12445, 2010.

[41] K.Hosokawa, . Shimoyama, and H. Miura. Dynamics of-salsembling systems: Analogy
with chemical kinematicsArtificial Life, 1(4):413-427, 1994.

[42] Kazuo Hosokawa, Takehito Tsujimori, Teruo Fujii, Hay&aetsu, Hajime Asama, Yoji
Kuroda, and Isao Endo. Self-organizing collective robaithworphogenesis in a vertical
plane. INIEEE International Conference on Robotics and Automati@R@), pages 2858—
2683, May 1998.

[43] Jr. John Amend and Hod Lipson. Shape-shifting matef@ programmable structures. In
International Conference on Ubiquitous Computing: Workslon Architectural Robotigs
September 2009.

[44] Chris Jones and Maja J. Matari¢. From local to globdiawor in intelligent self-assembly.
In IEEE International Conference on Robotics and Automati@RA) pages 721-726,
2003.

[45] Morten Winkler Jargensen, Esben Hallundbaek dstedyaad Henrik Hautop Lund. Mod-
ular atron: Modules for a self-reconfigurable robot.IEEE/RSJ International Conference
on Intelligent Robots and Systems (IRQ&)ges 2068-2073, September 2004.

[46] Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida,t&shi Murata, Kohji Tomita, and
Shigeru Kokaji. Automatic locomotion design and experitsdor a modular robotic sys-
tem. IEEE/ASME Transactions on Mechatronid@(3):314-325, June 2005.

[47] Mustafa Emre Karagozler, Seth Copen Goldstein, andhkeRdReid. Stress-driven mems

assembly + electrostatic forces = 1mm diameter robotEEE Conference on Intelligent
Robots and Systems (IRQBages 2763—-2769, October 2009.

228

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Jonathan Kelly and Hong Zhang. Combinatorial optirtia@a of sensing for rule-based
planar distributed assembly. IBEE International Conference on Intelligent Robots and
Systemspages 3728-3734, 2006.

H. Keum, A. Carlson, J.D. Eisenhaure, J.A. Rogers, anli®. Deterministically assem-
bled three-dimensional silicon microstructures usingtelaeric stamps. IfEEE Interna-
tional Conference on Micro Electro Mechanical Systems (MEMages 224—-227, February
2012.

Brian T. Kirby, Burak Aksak, Jason D. Campbell, Jamebiéburg, Todd C. Mowry, Pad-
manabhan Pillai, and Seth Copen Goldstein. A modular rolsgtem using magnetic force
effectors. INEEE/RSJ International Conference on Intelligent Robais 8ystems (IROS)
pages 2787-2793, 2007.

Ara Knaian. Electopermanent Magnetic Connectors and Actuators: @sviEnd Their
Application in Programmable MatterPhD thesis, Massachusetts Institute of Technology,
2010.

P. Koopman and T. Chakravarty. Cyclic redundancy camle) (polynomial selection for
embedded networks. Imternational Conference on Dependable Systems and Nigwor
pages 145-154, 2004.

Michihiko Koseki, Kengo Minami, and Norio Inou. Celld robots forming a mechani-
cal structure (evaluation of structural formation and k& design of “chobie ii”). In
Proceedings of 7th International Symposium on DistribidA@tibnomous Robotic Systems
(DARSO04)pages 131-140, June 2004.

Keith Kotay, Daneila Rus, Marsette Vona, and Craig MayiT he self-reconfiguring robotic
molecule. InIEEE International Conference on Robotics and Automati@R@), pages
424-431, 1998.

Keith Kotay and Daniela Rus. Motion synthesis for thi-seconfiguring robotic molecule.
In IEEE International Conference on Intelligent Robots andt&ynspages 843-851, Octo-
ber 1998.

Keith Kotay and Daniela Rus. Algorithms for self-redigniring molecule motion planning.
In IEEE/RSJ International Conference on Intelligent Robatd &ystems (IROSpctober
2000.

J. Krahn, D. Sameoto, and C. Menon. Controllable biogtimadhesion using embedded
phase change materig@mart Materials and Structure20(1):015014, January 2011.

K. Kuribayashi-Shigetomi, H. Onoe, and S. Takeuchif-88ding cell origami: Batch pro-
cess of self-folding 3d cell-laden microstructures aaddty cell traction force. IFEEE In-
ternational Conference on Micro Electro Mechanical Sys¢MEMS) pages 72-75, 2012.

229

[59] M. Kurihara, Y.J. Heo, K. Kuribayashi-Shigetomi, and Takeuchi. 3d laser lithography
combined with parylene coating for the rapid fabricatiorBdf microstructures. IhEEE
International Conference on Micro Electro Mechanical &yss (MEMS)pages 196-199,
February 2012.

[60] Haruhisa Kurokawa, Satoshi Murata, Eiichi YoshidahKdomita, and Shigeru Kokaji. A
3-d self-reconfigurable structure and experimentsIEBBE/RSJ International Conference
on Intelligent Robots and Systems (IRQ&#)ges 860—865, October 1998.

[61] Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, HiicYoshida, Shigeru Kokahiji, and
Satoshi Murata. Distributed self-reconfiguration contfomodular robot m-tran. IhREEE
International Conference on Mechatronics and Automatgages 254—-259, July 2005.

[62] Haruhisa Kurokawa, Kohji Tomita, Eiichi Yoshida, Saktd Murata, and Shigeru Kokaji.
Motion simulation of a modular robotic system. IBCON, pages 2473-2478, 2000.

[63] Michael D. M. Kutzer, Matthew S. Moses, Christopher Yof&n, David H. Scheidt, Gre-
gory S. Chirikjian, and Mehran Armand. Design of a new inae@ntly-mobile recon-
figurable modular robot. IhEEE International Conference on Robotics and Automation
pages 2758-2764, May 2010.

[64] Kiju Lee and Gregory S. Chirikjian. An autonomous roltwat duplicates itself from low-
complexity components. IFEEE International Conference on Robotics and Automation
pages 2771-2776, May 2010.

[65] Ben Leong, Barbara Liskov, and Robert Morris. Geograpbuting without planarization.
In Symposium on Networked Systems Design and Implementa@i) 2006.

[66] V. J. Lumelski and A. A. Stepanov. Dynamic path planniiog a mobile automaton
with limited information on the environmentlEEE Transactions on Automatic Contyol
31(11):1058-1063, 1986.

[67] Andreas Lyder, Ricardo Franco Mendoza Garcia, and &a§toy. Mechanical design
of odin, an extendable heterogeneous deformable modutat.ron IEEE International
Conference on Intelligent Robots and Systems (IRQHg)es 883—-888, September 2008.

[68] Andreas Lyder, Henrik Gordon Peterson, and Kasper. SR@presentation and shape esti-
mation of odin, a parallel under-actuated modular robotEEBE International Conference
on Intelligent Robots and Systems (IRQ&)ges 5275-5280, October 2009.

[69] Bruce J. MacLennan. Universally programmable ingeliit matter summary. I{EEE
International Conference on Nanotechnology (NAN@2ges 405-408, 2002.

[70] Daniel Marbach and Auke Jan ljspeert. Online optim@abf modular robot locomotion.
In IEEE International Conference on Mechatronics and Autoamtpages 248-253, July
2005.

230

[71] Andrew D. Marchese, Harry Asada, and Daniela Rus. @dlittig the locomotion of a
separated inner robot from and outer robot using electropeent magnets. MeEE Inter-
national Conference on Robotics and Automation (ICRAye in press, 2012.

[72] Microsoft robotics developer studiattp://www.microsoft.com/robotics/.

[73] Shuhei Miyashita, Marco Kessler, and Max LungarellaowHmorphology affects self-
assembly in a stochastic modular robot. IREE International Conference on Robotics
and Automationpages 3533—-3538, May 2008.

[74] Satoshi Murata, Kiyoharu Kakomura, and Haruhisa Kase#t. Docking experiments of
a modular robot by visual feedback. IBEE/RSJ International Conference on Intelligent
Robots and Systems (IRQBages 625—-630, October 2006.

[75] Satoshi Murata, Haruhisa Kurokawa, and Shigeru Kok§elf-assembling machine. In
IEEE International Conference on Robotics and Automati®R@), pages 441448, 1994.

[76] Satoshi Murata, Eiichi Yoshida, Akiya Kamimura, Haisdn Kurokawa, Kohji Tomita, and
Shigeru Kokaji. M-tran: Self-reconfigurable modular rabatystem.|[EEE/ASME Trans-
actions on Mechatroni¢¥(4):431-441, December 2002.

[77] Radhika Nagpal. Programmable self-assembly usingdically-inspired multiagent con-
trol. In International Conference on Autonomous Agents and Muha&ystems (AAMAS)
July 2002.

[78] Nils Napp, Samuel Burden, and Eric Klavins. The stat&tdynamics of programmed self-
assembly. INEEE International Conference on Robotics and Automati@R@), pages
1469-1476, May 2006.

[79] Michael T. Northern, Christian Greiner, Eduard ArzbhdaKimberly L. Turner. A gecko-
inspired reversible adhesivAdvanced Materials20(20):3905-3909, September 2008.

[80] Open dynamics engin&ttp://www.ode.org/, 2010.

[81] Esben Hallundbaek @stergaard and Henrik Hautop Lundolvihg control for modular
robotic units. INIEEE International Symposium on Computational Intelligeim Robotics
and Automationpages 886-892, July 2003.

[82] Raymond Oung, Frederic Bourgault, Matthew Donovai, Baffaello D’Andrea. The dis-
tributed flight array. INEEE International Conference on Robotics and AutomatiGiR@),
May 2010.

[83] Amit Pamecha, |. Ebert-Uphoff, and Gregory S. Chiakii Useful metrics for modular
robot motion planning. IEEE Transactions on Robotics and Automatid3(4):531-45,
1997.

231

[84] Chytra Pawashe, Steven Floyd, Eric Diller, and MetittiSTwo-dimensional autonomous
microparticle manipulation strategies for magnetic michmts in fluidic environments.
IEEE Transactions on Robotic28(2):467-477, April 2012.

[85] Chytra Pawashe, Steven Floyd, and Metin Sitti. assgmd disassembly of magnetic mo-
bile micro-robots towards 2-d reconfigurable micro-systenm International Symposium
on Robotics ResearcA009.

[86] L.S. Penrose. Self-reproducing machirgsientific Americaj200(6):105-114, June 1959.
[87] Physx.http://developer.nvidia.com/object/physx.html.

[88] Padmanabhan Pillai, Jason Campbell, Gautam Kedigah8ioudgal, and Kaushik Sheth.
A 3d fax machine based on claytronics. liernational Conference on Intelligent Robots
and Systems (IROS)ages 4728-4735, October 2006.

[89] Player projecthttp://playerstage.sourceforge.net/.

[90] Konstantine C. Prevas, Cheinsal, MehmeOnder Efe, and Pradeep K. Khosla. A hierar-
chical motion planning strategy for a uniform self-reconfaple modular robotic system.
In IEEE International Conference on Robotics and Automati@RA), pages 787-792,
May 2002.

[91] Benjamin D. Rister, Jason Campbell, Padmanabhan,Ritl@ Todd C. Mowry. Integrated
debugging of large modular robot ensemblesldRA pages 2227-2234, April 2007.

[92] Paul W. K. Rothemund and Erik Winfree. The program-siamplexity of self-assembled
squares. Ir32rd Annual ACM Symposium on Theory of Compytpages 459-468, 2000.

[93] Michael Rubenstein, Christian Ahler, and Radhika Na&gKilobot: A low cost scalable
robot system for collective behaviors. IBEE International Conference on Robotics and
Automation (ICRA)page In Press, May 2012.

[94] Michael Rubenstein and Wei-Min Shen. Scalable sedkathly and self-repair in a collec-
tive of robots. INIEEE International Conference on Intelligent Robots andt&ms pages
1484-1489, October 2009.

[95] Michael Rubenstein and Wei-Min Shen. Automatic sckdaize selection for the shape of
a distributed robotic collective. IlEEEE International Conference on Intelligent Robots and
Systems (IROSpage in press, October 2010.

[96] Daniela Rus and Marsette Vona. A basis for self-recamiigy robots using crystal modules.
In IEEE/RSJ International Conference on Intelligent Robatd &ystems (IROSpages
2194-2202, October 2000.

[97] Daniela Rus and Marsette Vona. Crystalline robotsf-&slonfiguration with compressible
unit modules.International Journal of Robotics Reseay@®(9):699-715, 2003.

232

[98] Behnam Salemi, Mark Moll, and Wei-Min Shen. Superbodéployable, multi-functional,
and modular self-reconfigurable robotic system.B&E International Conference on In-
telligent Robots and Systems (IRQ&)ges 3636—3641, October 2006.

[99] N.S. Shaar, G. Barbastathis, and C. Livermore. Castawxhanical alignment for assem-
bling 3d mems. INEEE International Conference on Micro Electro Mechani&lstems
(MEMS) pages 1064—-1068, January 2008.

[100] Wei-Min Shen and Peter Will. Docking in self-reconfigble robots. INEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems$I)Riages 1049-1054, October
2001.

[101] Masahiro Shimizu, Akio Ishiguro, and Toshihiro Kavadgu. A modular robot that exploits
a spontaneous connectivity control mechanismIlEIBE/RSJ International Conference on
Intelligent Robots and Systems (IRO&ges 1899-1904, August 2005.

[102] Masahiro Shimizu, Takafumi Mori, and Akio Ishiguro. development of a modular robot
that enables adaptive reconfiguration.IBEEE/RSJ International Conference on Intelligent
Robots and Systems (IRQBages 174-179, October 2006.

[103] Masahiro Shimizu and Kenji Suzuki. A self-repairirtgusture for modules and its control
by vibrating actuation mechanisms. IBEE International Conference on Robotics and
Automation (ICRA)pages 4281-4286, May 20009.

[104] P. S. Sreetharan, J. P. Whitney, M. D. Strauss, and Rlodd. Monolithic fabrication
of millimeter-scale machinesJournal of Micromechanics and Microengineerjmage In
Press, 2012.

[105] John W. Suh, Samuel B. Homans, and Mark Yim. Teleculdschanical design of a
module for self-reconfigurable robotics. IBEE International Conference on Robotics and
Automation (ICRA)pages 4095-4101, May 2002.

[106] Naotaka Tanaka, Michihiro Kawashita, Yasu Yoshimdi@shihide Uematsu, Masahiko Fu-
jiwasa, Hirohisa Shimokawa, Nobuhiro Kinoshita, Takahaito, Takafumi Kikuchi, and
Takashi Akazawa. Characterization of mos transistors tdtefabricatin and 3d-assembly.
In Electronics Systemintegration Technology Conferepages 131-134, 2008.

[107] Sindy K. Y. Tang, Ratmir Derda, Aaron D. Mazzeo, and fgedVl. Whitesides. Reconfig-
urable self-assembly of mesoscale optical componentsqiiddliquid interface Advanced
Materials 23:2413-2418, 2011.

[108] Michael Tolley, J Hiller, and Hod Lipson. Evolutioryadesign and assembly planning for

stochastic modular robots. IREE Conference on Intelligent Robotics and Systems (IROS)
pages 73—-78, October 2009.

233

[109] Michael Tolley and Hod Lipson. Fluidic manipulatioorfscalable stochastic 3d assembly
of modular robots. INEEE International Conference on Robotics and Automati@iR@),
pages 2473-2478, May 2010.

[110] Michael T. Tolley, Michael Kalontarov, Jonas Neubd&tvid Erickson, and Hod Lipson.
Stochastic modular robotic systems: A study of fluidic addgrstrategiesIEEE Transac-
tions on Robotics26(3):518-530, June 2010.

[111] Michael T. Tolley, Mekala Krishnan, David EricksomdaHod Lipson. Dynamically pro-
grammable fluidic assemblypplied Physics Lettey®3(254105), December 2008.

[112] Michael T. Tolley and Hod Lipson. On-line assemblyrpiang for stochastically reconfig-
urable systemdnternational Journal of Robotics Resear@(13):1566—1584, November
2011.

[113] Michael T. Tolley and Hod Lipson. Programmable 3d kamtic fluidic assembly of cm-
scale modules. IHEEE/RSJ International Conference on Intelligent Robatd &ystems
(IROS) pages 4366—-4371, September 2011.

[114] CemUnsal and Pradeep K. Khosla. Mechatronic design of a modalfreconfiguring
robotic system. IHEEE International Conference on Robotics and Automati@RA),
pages 1742-1747, April 2000.

[115] Paulina Varshavskaya, Leslie P. Kaelbling, and Danfus. Learning distributed control
for modular robots. IHEEE International Conference on Intelligent Robots andt&ms
pages 2648—-2653, 2004.

[116] Karthik Visvanathan, Tao Li, and Togesh B. Gianchamdad-soule: A fabrication process
for large sale integration and micromachining of sphemstalctures. INEEE International
Conference on Micro Electro Mechanical Systems (MEM&)es 45-48, January 2011.

[117] J. W. von Honschoten, A. Lengrain, J. W. BerenschoAlelmann, and N. R. Tas. Micro-
assembly of three dimensional thetrahedra by capillarye®r INIEEE International Con-
ference on Micro Electro Mechanical Systems (MEM@&pes 288-291, 2011.

[118] Jennifer E. Walter, Elizabeth M. Tsai, and Nancy M. AmaAlgorithms for fast concur-
rent reconfiguration of hexagonal metamorphic robdfSEE Transactions on Robotics
21(4):621-631, August 2005.

[119] Cyberbotics—webotaittp://wuw.cyberbotics.com/overview.

[120] Justin Werfel. Anthills Built to Order: Automating Construction with Afitial Swarms
PhD thesis, Massachusetts Institute of Technology, 2006.

[121] Paul White, Kris Kopanski, and Hod Lipson. Stochad@lf-reconfigurable cellular
robotics. INIEEE Conference on Robotics and Automatipages 2888—-2893, April 2004.

234

[122] Paul White, Victor Zykov, Josh Bongard, and Hod Lipsorhree dimensional stochastic
reconfiguration of modular robots. Robotics Science and Systedsne 2005.

[123] Paul J. White, Michael L. Posner, and Mark Yim. Strénghalysis of miniature folded
right angle tetrahedron chain programmable mattedEEBE International Conference on
Robotics and Automation (ICRA)ages 2785—-2790, 2010.

[124] G. Whitesides and B. Grzybowski. Self-assembly atsalles. Science 295:2418-21,
March 2002.

[125] George M. Whitesides and Mila Boncheva. Beyond mdEsuSelf-assembly of meso-
scope and macroscopic componeniroceedings of the National Academy of Sciences
99(8):4769-4774, April 16 2002.

[126] J. P. Whitney, P. S. Sreetharan, K. Y. Ma, and R. J. Wdtap-up book memsJournal of
Micromechanics and Microengineeringl:115021, October 2011.

[127] LeiYang, Wei Liu, Chunging Wang, and Yanhong Tian.f@slsembly of three-dimensional
microstructures in mems via fluxless laser reflow solderIndEEE International Confer-
ence on Electronic Packaging Technology and High Densitk&ging pages 1148-1151,
2011.

[128] Se Young Yang, Hyung ryul Johnny Choi, Martin Deteeeg George Barbastathis. Nanos-
tructured origami folding of patternable resist for 3d diginaphy. InIEEE International
Conference on Optical MEMS and Nanophotonpzges 37—-38, 2010.

[129] Mark Yim. A reconfigurable modular robot with many maedef locomotion. InNJSME
International Conference on Advanced Mechatronpzges 283-288, 1993.

[130] Mark Yim. New locomotion gaits. IMEEE International Conference on Robotics and
Automation (ICRA)pages 25082514, 1994.

[131] Mark Yim, David G. Duff, and Kimon D Roufas. Polybot: aoalular reconfigurable robot.
In IEEE International Conference on Robotics and Automati@RA) pages 514-520,
April 2000.

[132] Mark Yim and Sam Homans. Digital clayww2.parc.com/spl/projects/modrobots/
lattice/digitalclay/index.html, 2002.

[133] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus,rk#oll, Hod Lipson, Eric
Klavins, and Gregory S. Chirikjian. Modular self-reconfighle robot systems: Challenges
and opportunities for the futurd EEE Robotics and Automation Magazjriet(1):43-52,
March 2007.

[134] Mark Yim, Babak Shirmohammadi, Jimmy Sastra, Michaatk, Michael Dugan, and C.J.
Taylor. Towards robotic self-reassembly after explosibnlEEE/RSJ International Con-
ference on Intelligent Robots and Systepagjes 2767—-2772, November 2007.

235

[135]

[136]

[137]

[138]

[139]

Mark Yim, Ying Zhang, Kimon Roufas, David Duff, and GQgaEldershaw. Connecting
and disconnecting for self-reconfiguration with polyboh IEEE/ASME Transaction on
Mechatronics, special issue on Information Technology echatronics2003.

Eiichi Yoshida, Satoshi Murata, Shigeru Kokaji, AkiyKamimura, Kohji Tomita, and
Haruhisa Kurokawa. Get back in shape! a hardware prototgffgexonfigurable mod-
ular microrobot that uses shape memory alllyeE Robotics and Automation Magazjne
9(4):54-60, 2002.

Eiichi Yoshida, Satoshi Murata, Kohji Tomita, HaraaiKurokawa, and Shigeru Kokaji.
Distributed formation control for a modular mechanicalteys. In IEEE International
Conference on Intelligent Robots and Systems (IRQe#g)es 1090-1097, 1997.

Chih-Han Yu, Kristina Haller, Donald Ingber, and RéahNagpal. Morpho: A self-
deformable modular robot inspired by cellar structure.lHRE International Conference
on Intelligent Robots and Systems (IRQ&)ges 3571-3578, September 2008.

Victor Zykov, Efstathios Mytilinaios, Mark Desnoyeand Hod Lipson. Evolved and de-
signed self-reproducing modular robotidEEE Transactions on Robotic83(2):308-319,
April 2007.

236

